
1

Lecture 1

The Basics

(Review of Familiar Topics)

Building a C++ Program

n A C++ Program consists of
n Source files

n Header files

n Source Files
n Usually have a .cpp or .cp extension

n Compiled individually

n Header Files
n Usually have a .h extension (some use of .hpp)

n Contain declarations which are “included” by source files.

n Let’s take a quick look at how a C/C++ program is
built
n “From 10,000 feet” (I’ll omit some details to keep it simple)

Building a C++ Program

MAIN.CPP MAIN.OBJ MAIN.EXE

n MAIN.CPP is a source file
n Contains source code you write.

n MAIN.OBJ is an object file
n Contains object code generated by compiling MAIN.CPP

n MAIN.EXE is an executable file
n Is a “double-clickable” application that may be run. It is

created by the linker which takes object code and generates
executables.

Building a C++ Program

MAIN.CPP
n Programs may be made up

of multiple source files

n When building the program
these files are compiled
independently.
n The compiler makes note of

which symbols (variables,
function names) are not
defined in the same file.

n So, when MAIN.CPP is
compiled, the compiler makes
a note that EventLoop() is
(apparently) defined
elsewhere…

int main()
{
// real code here
EventLoop();
}

EVENTS.CPP

void EventLoop()
{
// real code here
}

Building a C++ Program

MAIN.OBJ
n The compiler creates two object

files.

n The linker is then called to build
an executable out of the object
files.

n The linker will be told which
object files should be used in
creating the exe

n It’s the linker’s job to make sure
symbols referenced from one file
(but not defined in that file) are
found in other object files.

SYMBOLS DEFINED:
main();

OTHER SYMBOLS
REFERENCED:
EventLoop();

EVENTS.OBJ

SYMBOLS DEFINED:
void EventLoop();

Building a C++ Program

MAIN.OBJ
n When generating SAMPLE.EXE,

the linker will notice that
“EventLoop” is not defined in
MAIN.OBJ. If it can’t find that
symbol in an other object file, an
error will result. Otherwise, if all
symbols can be found, the
executable will be generated.

SYMBOLS DEFINED:
main();

OTHER SYMBOLS
REFERENCED:
EventLoop();

SYMBOLS DEFINED:
void EventLoop();

EVENTS.OBJ

SAMPLE.EXE

2

A Simple C++ Program
#include <iostream> // header file

void main()

{
 cout << “Hello World!” << endl;
}

n #include <iostream> -- needed to access I/O streams
(console)

n void main() -- main function-Entry point into your program

n {,} -- Scope delimiters

n cout -- the standard output identifier (console)

n << -- Special operator which takes contents to the right and
sends them to the left

n endl -- special identifier which sends a newline

Demonstration #1

Let’s compile it!

Some Simple C++ Type Declarations
int j;

float interestRate;

char aLetter;

string userName;

n int -- integer type: range is implementation dependent
n usually 32-bits -- +/- 2,147,483,648

n 16-bits on older systems -- +/- 32,768

n float -- floating point number

n char -- a single character

n string -- more than an array of characters (a class)
n we’ll look at these in more detail later...

How to Assign Values
main()

{
 int j = 0;

 int k = 1;

 float pi;

 pi = 3.14159;
}

n Assignment at declaration time
n insert an equals sign followed by an initial value

n Assignment of previously declared variable
n start with the variable name, follow with equals sign, end with

value to be assigned.

Arithmetic Expressions

n Can be used to calculate a value to be assigned

n What is wrong with the division expression?

n When assigning values to variables, the value is always
coerced to the type of the variable it is getting assigned to.

main()

{
 int j = 0,k = 1,m = 2,n,p,q,r;

 float f;

 n = j + k; // Add j and k, place in n

 p = n * m; // Multiply n and m, store in p

 q = p / 4.0; // Divide p by 4, place in q

 r = q - 1; // Subtract 1 from q, place in r

}

Arithmetic Expressions (cont)
main()

{
 int j = 0,k = 5;

 j = j + 1;

 k = k - 5;

}

n The same variable may appear on both sides of an
assignment operator
n on the right hand side of the assignment operator, the variable in

question represents its value prior to the execution of this
statement.

n on the left hand side of the assignment operator, the variable
receives a new value which is the result of the evaluation on the
right hand side.

n In our example above, j ends up being “1” and k ends up being “0”.

3

Arithmetic Expressions (shortcuts)
main()

{
 int j = 0,k = 5;

 j++; // really like j = j + 1;

 k -= 5; // really like k = k - 5;

}

n When incrementing an integer variable by “1”, just append
a ++ to the variable name.

n When decrementing by “1”, just append a “--” to the
variable name.

n When performing any other operation on a variable and
stuffing the value back into the same variable, use a
shortcut (like +=, -=, *=)

Arithmetic Expressions (prefix vs. postfix)

main()

{
 int j = 0,k = 0,q,r;

 q = j++; // Postfix operation

 r = ++k; // Prefix operation

}

n When the “++” appears after a variable it is said to be a
“postfix operator”)
n the variable isn’t incremented until all other evaluations (and

assignments) have taken place

n When the “++” appears before a variable it is said to be a
“prefix operator”)
n the variable is incremented before any other evaluations take place.

n What will the values of q & r be in the example above?

Demonstration #2

Arithmetic Expressions, Shortcuts
and Pre/Postfix Operators

Control Structures--if/else statements

if (expression)

 statement1
else

 statement2

n expression is any expression that can be evaluated as an
integer
n a non zero value is taken as “true”, a 0 value is taken as “false”

n statement1 is a statement or group of statements executed
if expression evaluates to a non-zero value

n statement2 is a statement or group of statements executed
if expression evaluates to a zero value
n statement2 is needed only if the the optional else keyword is

present

Control Structures--if/else statements

if (x = 0)

 cout << “It’s zero” << endl;

else

 cout << “No, it’s not zero!” << endl;

n WARNING!!!!!
n While the “if” statement above may look perfectly fine it contains a

very common flaw.

n The assignment operator (=) is not used to test for equality.

n “x=0” is an expression which evaluates to “0” along with having
the side effect of storing the value 0 in the variable “x”.

n As an expression which evaluates to “0” it will always cause the
“else” branch to be executed.

Control Structures--if/else statements

if (x == 0)

 cout << “It’s zero” << endl;

else

 cout << “No, it’s not zero!” << endl;

n This is the correct way, use the equality operator (==)

n What are some of the other comparison operators?
n (a > b), true if “a” is greater than “b”

n (a < b), true if “a” is less than “b”

n (a >= b), true if “a” is greater than or equal to “b”

n (a <= b), true if “a” is less than or equal to “b”

n (a != b), true if “a” is not equal to “b”

4

Control Structures--compound expressions

if ((x == 0) || (y > 1))

{

 cout << “x is zero OR” << endl;

 cout << “y is greater than 1” << endl;

}

n An expression with the logical “or” (||) operator…
n Evaluates to “true” if an expression on either side evaluates to

“true”

n An expression with the logical “and” (&&) operator…
n Evaluates to “true” if the expressions on both sides evaluate to

“true”

n Note the use of curly braces ({,}) above
n Used to group multiple statements to be executed if the “if”

statement evaluates to “true”

Demonstration #3

If/else statements

Control Structures--loops

while (expression)

statement(s)

n A while loop will continue executing as long as
expression evaluates to a non-zero (true) value.

n How do you print your name 10 times using a while loop?

int x = 0;

while (x < 10)

{

 cout << “Ron DiNapoli” << endl;

 x++;

}

• Why is it (x < 10) and not (x <= 10) ?

Control Structures--loops
int x;

while (true)

{
 cin >> x;

 if (x == 0)

 break;

 cout << “You entered the number “ << x;

}

n A while loop can be used to loop forever by having it test
for an expression which will always evaluate to a non-zero
value (true)

n A break statement can be used to break out of such a
loop when the time comes

n Some think that this is bad programming style, but it is
frequently used.

Control Structures--do…while loops
int x;

do

{
 cin >> x;

 if (x == 0)

 break;

 cout << “You entered the number “ << x;

} while(true);

n A do..while loop is very similar to a regular while loop.
n Terminating condition is specified at the end of the loop

Demonstration #4

loops

