
1

1

CS212
Java Practicum

Introduction to SaM

2

What is SaM? Why SaM?
● From last lecture:

– computer stores data and instructions in memory
– fetch-and-decode cycle:

– JVM is ________ of computers
– bytecodes are ______________

● SaM:
– stands for: _____________________
– see SaM on CS212 for full instruction set
– gives us legible instruction set

● your compiler will generate ________
● BTW, what's a compiler? (last panel...)

3

Samcode Instructions
● Low-level instructions:

– push and pop values in memory
– mnemonics for bit patterns

● Structure:
 opcode
 opcode operand

● Areas (watch DIS play w/SaM)

4

Structure of Samcode File
● ASCII Text! (What's ASCII?)
● Write instructions on new lines
● // indicates single-line comments, which are ignored
● Program ends with __________
● Program must leave how many items on Stack?

2

5

Focus on Stack
● Call Stack (and other names):

– function calls function calls ...
– when last function done, go back, then back, then ...
– how to picture this structure?

● Frame:
– each function's portion of Stack
– variables, data, administrative info

● Cells and addresses
– start at 0!

● Helpful picture?

6

Useful Registers
● Frame Based Register (FBR)

– administrative information
– keeps track of current frame (and thus, function)

● Stack Pointer (SP)
– uses register
– store location of next free cell in stack

● Helpful picture?

7

Some Instructions
● ALU:

– arithmetic, boolean, comparison
– generally follows below op top
– usually pops both values and pushes result

● Stack Manipulation:
– pushing
– swapping, duplicating
– storing, retrieving

● Register
● Control
● Descriptions:

– see on-line documentation
– see Chapter 1

8

Some Examples
● Notation:

– Infix: (1 – 2) – 3
– Postfix: 1 2 – 3 –

● Logical: ~(4 <= 5)
– Samcode rem:below op top

● Samcode?

3

9

Program Storage?
● Main memory model:

– store programs as __________
– so, instructions have patterns of _______

● Where are they in SaM?
– Samcode read into an array
– array stores instruction objects

● Want more?See documentation and source code
– SaM→Individual Files→Core→Instructions
– See next page for example

● How to load your own instructions?
– recompile everything (a pain)
– or...use SaM's instruction loader

10

Example

package edu.cornell.cs.sam.core.instructions;
import edu.cornell.cs.sam.core.*;

public class SAM_ADD extends SamInstruction {
public void exec() throws SystemException {

int type1 = mem.getType(cpu.get(SP) - 2);
int type2 = mem.getType(cpu.get(SP) - 1);
mem.push(higherPrecedence(type1, type2), mem.pop() + mem.pop());
cpu.inc(PC);

}
}

11

Variable Scope
● Take an aside... is SaM really useful?
● Example:

– is the following legal?
 int x(int x) { return x++; }
 int y(int x) { return x(x); }
– why? why not?

● Scope of variable:
– region of code in which variable represents something
– how does Java indicate?

● Local and global variables:
– each function has its own local variables
– global variables shared

● Does SaM help?

12

Variables and Frames
● A way to picture variables in frames...

– variable gets cell
– Aside: SaM shows type of cell

● Samcode program:
– allocate cell
– fill cell
– later retrieve/change contents
– finally deallocate cell (why?)

4

13

Allocation and Deallocation
● Pushing:

– PUSHIMM... (see SaM website)
● Allocating:

– Allocate v amount of vars: ADDSPv
– Deallocate v amount of vars: ADDSP -v

● Example:
 ADDSP 3
 ADDSP -1
 ADDSP -1
 ADDSP -1
 STOP
 // error mesg (why?)

14

How to access a variable?
● Addressing of variables:

– absolute
– relative

● Absolute:
– don't worry about your current frame
– figure out variable address on stack
– eg) globals

● Relative:
– do worry about your current frame
– figure out variable address with respect to FBR value
– eg) locals

15

Absolute Address
● Instructions:

– To store a value v at location i:
● PUSHIMMv: Stack[SP] ← v; SP++
● STOREABSi: Stack[i] ← Stack[SP-1]; SP--

– To retrieve a value v from location k:
● PUSHABSk; Stack[SP] ← Stack[k]; SP++

● Example:

ADDSP 3
PUSHIMM 10
STOREABS 1
PUSHIMM 20
STOREABS 2
PUSHABS 1
PUSHABS 2
ADD
STOREABS 0
ADDSP -2
STOP

int rv;
int x;
int y;
x = 10;
y = 20;
rv = x + y;
return rv;

16

Relative Address
● Instructions:

– To store a value v at location i:
● PUSHIMM v: Stack[SP] ← v; SP++
● STOREOFFi: Stack[i+FBR] ← Stack[SP-1]; SP--

– To retrieve a value v from location k:
● PUSHOFF k: Stack[SP] ← Stack[k+FBR]; SP++

● Picture?

5

17

Example
public int add()

int x, y;
x = 10;
y = 20;
return x+y;

}

ADDSP 1 // rv of program
JSR add // new frame (jump to "add")
STOREOFF 0 // store rv of "add"
STOP // done

add: // code for "add" function
LINK // store old FBR (0) and set new FBR (2)
ADDSP 3 // allocate space for x, y, rv of add

// rv of add is at relative address 1
PUSHIMM 10 // push value 10
STOREOFF 2 // store 10 in x's cell
PUSHIMM 20 // push value 20
STOREOFF 3 // store 20 in y's cell

PUSHOFF 2 // retrieve x
PUSHOFF 3 // retrieve y
ADD // x+y
STOREOFF 1 // store x+y as rv of add
ADDSP -2 // deallocate x, y

SWAP // exchange rv of add for old FBR
UNLINK // restore old FBR (0)
SWAP // exchange rv of add for return addres s
RST // return to Samcode just after "JSR ad d"

NOTE: We will use a different frame structure later!
18

Human Compiling
● Compiling:

– translate code (like Java) to
machine code (like Samcode)

– compiler (like javac) does the work for you
● Human Compiling (Part 1 of CS212):

– you identify simple expressions and statements
– you convert them into Samcode
– you test your Samcode problems in SaM
– we grade your correctness and style

