
Chapter 2

1.1 Introduction
In Part 1 of the project, you learned about SaM, which is essentially a virtual computer with space
for commands, data, and registers. Recall that computers can be instructed with machine code,
which is composed of an op code and an operand. Since humans have trouble writing code as
patterns of hexadecimal numbers, we write assembly code, which is a mnemonic for machine
code. For SaM, you write programs in our version of assembly code that we call Samcode.
You wrote Samcode for a computer language with variables, declarations, assignments, and
arithmetic. This assignment expands upon your previous work by introducing a high-level
programming language that we call Bali. Along with your previous work with operations and
assignments, you will learn how to write control structures in Samcode. The programming for this
part of the project involves writing a compiler that will translate Bali code into Samcode.

1.2 Not the Bali in your actual project!
Each semester we create a new Bali that looks like Java or C. As shown in lecture, the following
“Bali--” program demonstrates an example grammar. Note that the grammar in this chapter is
different from the Bali in your project! However, there are many common elements that you
will find helpful:
main { // begin program

{ // begin varblock:
int x ; int y ; int rv ;

} // end varblock

{ // begin statblock:
x = 2 ;
if (x > 1)

y = x ;
rv = y ;

} // end statblock

} // end program

Why do some elements seem weird? We have designed Bali for helping you write a compiler, not
perform industrial programming. Note that this chapter focuses on control structures, leaving
objects, functions, and other advanced concepts for later.
To handle SaM’s return value of main, we use the following semantic requirements:

• main will have a return variable called rv.
• An assignment of rv must be the last statement.

1.3 Arithmetic, Declarations, and Assignments
Refer to Chapter 1 for examples of Samcode for arithmetic/logic (ALU) operations, variable
declarations (and subsequent allocation), and variable assignments. You must use relative
1/8

http://courses.cs.cornell.edu/cs212/2003fa/Project/p1/p1cs212fa03.pdf
http://courses.cs.cornell.edu/cs212/2003fa/Project/p1/p1cs212fa03.pdf

Chapter 2 2/8
addressing for this assignment to prepare for adding functions in future assignments with Bali.
Recall the following rules:

• To allocate space for each variable, including a “return variable” (rv), adjust the stack
pointer “up” the stack with ADDSP value.

• To place a value onto a stack, use PUSHIMM value.
• To store a variable value, which means assigning a variable, use STOREOFF address.
• To retrieve a variable value, use PUSHOFF address.
• To return a variable value, use ADDSP value to move the SP “down” to 1.

Remember that we are assuming that all Samcode goes into only one function, main. In later
assignments, we will introduce more instructions that deal with multiple functions.

1.4 Fundamentals of Control Structures
This section introduces the fundamentals of control structures for Bali and SaM, which are
statements that allow you to perform selection and repetition.

1.4.1 Goto
In many programming “circles,” the goto keyword has a bad reputation. You might be surprised
to learn that not all gotos are created equally! SaM requires a form of goto called a jump. So,
we want you to know a little history of the goto before introducing the jump. You should read
this classic paper: “Go To Statement Considered Harmful” by E. W. Dijkstra, Communications of
the ACM, Vol. 11, No. 3, March 1968, pp. 147–148, http://www.acm.org/classics/oct95/.

1.4.1.1 Bad Goto
Suppose that you have a language that allows a goto statement. Such statements send control to
another statement. To locate another statement, the language needs to allow labeling, which
means putting an address in front of a statement.* For instance, the following snippet of
FORTRAN 77† demonstrates the wonders of goto and how a language might label a statement:

 PROGRAM ANTEDILUVEAN
 INTEGER N, MAX, SIGNAL
 PARAMETER (MAX=10, SIGNAL=5)

 DO 18 N = 1, MAX
 PRINT *, N
 IF (N .EQ. SIGNAL) THEN
 GOTO 19
 ELSE
 GOTO 20
 END IF

18 CONTINUE
19 PRINT *, 'LOOP ABORTED!'
20 PRINT *, 'LOOP SUCCEEDED!'

 END

* See Page 45 of Java in a Nutshell for Java’s implementation of a labeled statement.
† Yes, this is the first language DIS was taught in college.

http://www.acm.org/classics/oct95

Chapter 2 3/8
Can you see the horror in using a goto indiscriminately to jump anywhere in your code?‡ In
general, when a language supplies a robust control structure, such as while and if, you do not
need to use a goto.

1.4.1.2 Good Goto
In your introductory programming course, you might have been told that languages, like Java, are
high level, whereas a language, like assembly, is low level. One difference is that a high-level
language provides more elegant control structures, whereas assembly typically provide bare
bones, or primitive, instructions.
For instance, suppose that you need to print the values from 1 to 4. A simple while loop easily
handles this problem, as shown below in pseudocode:

while
print x

However, assembly language generally provide instructions to perform if-repeat, which produces
the same effects of the while loop, as shown below in pseudocode:
10
20 if then
30 print x
40
50 goto 20
60 continue

In this case, we have a useful and necessary goto because the goto provides the mechanism for
the looping control structure, which is essential for most programs.

1.5 SaM Instructions for Control Structures
In this assignment, we introduce two new SaM instructions, which assist with writing control
structures. These instructions belong to the control classifications:

• JUMP t: . Jump to an instruction with address t.
• JUMPC t: If , ; else . Pop the top of the stack. If the value

is true, jump to the instruction with address t. Otherwise, go to the next instruction.

To help remember the difference in names, the “C” in JUMPC stands for condition. These
instructions are modeled after the “good goto” and are explained in more detail in this section.

1.5.1 Labels
SaM counts each instruction inside a Samcode file, starting with zero. As SaM runs each
instruction, its PC register stores the number of the instruction currently being executed.
Occasionally, you may need to go to an instruction besides the numerically subsequent
instruction, as you would in cases of selection statement. In this case, we will apply the goto
concept. Since a goto-like instruction requires an address of an instruction, you may either keep
track of instruction numbers or write a label. A label is a text string, above or to the left of the
instruction to which you want another instruction to go.

‡ Does Java deliberately reserve the goto keyword with no meaning to prevent anyone from ever implementing it?

x 1←
x 5<

x x 1+←

x 1←
x 5<

x x 1+←

PC t←
Vtop 0≠ PC t← PC PC 1+←

Chapter 2 4/8
So, you may write either
label:
instruction

or
label: instruction

Either form of labeling (above or on the same line) is acceptable in terms of style. Internally, SaM
replaces label with its actual instruction number.

1.5.2 Jumps
To provide a mechanism for goto, SaM uses a jump, which is a statement that goes from one
instruction to another in Samcode. So that an instruction “knows” where to jump, you will label
Samcode instructions, as discussed above. To jump to the instruction below or to the right of
label, use JUMP label. So, to provide jumping, do the following:

• Label a portion of Samcode with a text label followed by a colon (:)
• Use the Samcode statement JUMP label to have SaM jump to the labeled statement that

begins with label: and start executing the statements following the label.

So, the overall structure of a jump and label might look something like the following Samcode:
stuff1
stuff2
JUMP hello
stuff3
hello:
stuff4
STOP

For the code above, assuming the instructions in stuff1 and stuff2 contain no jumps, SaM
will execute code in stuff1 and stuff2, then jump to the first instruction below hello:
(stuff4), and finally, stop. SaM will not execute stuff3. Note that the following code is
identical to the above example because you may write labels to the left of an instruction:
stuff1
stuff2
JUMP hello
stuff3
hello:stuff4
STOP

For a more specific example, try running the following Samcode:
PUSHIMM 2
JUMP blurt
PUSHIMM 100
blurt: PUSHIMM 3
ADD
STOP

After pushing 2 to the top of the stack, SaM jumps to the portion of the code that is labeled as
blurt. Then, SaM executes the code in that block, which pushes the value of 3 and adds it to 2.
Thus, you will see that SaM returns a value of 5. Note that PUSHIMM 100 never executes. Be
sure to run this example in SaM and keep track of the SP and PC registers.

Chapter 2 5/8
1.5.3 Addresses
Upon loading a Samcode program, SaM stores each Samcode instruction along with its data (if
any) in internal memory, as shown in SaM’s Program.java and SamProgram.java files.
Consequently, each instruction has an address, which starts at 0 for the first instruction. After you
load a SaM program, SaM shows the address of each instruction in the form address:instruction
in the Program Code panel. SaM will show label information as well, as discussed below.
Do not think of labels as instructions! SaM numbers each Samcode statement with an address, but
the labels become placeholders that are not numbered directly. For instance, run the following
program, which has twelve lines of Samcode:
// Program for adding 2 and 3 in a convoluted fashion:
JUMP a // line 1
d: // line 2
STOP // line 3
a: // line 4
PUSHIMM 3 // line 5
JUMP b // line 6
b: // line 7
PUSHIMM 2 // line 8
JUMP c // line 9
c: // line 10
ADD // line 11
JUMP d // line 12

Do you see how this Samcode will produce a result of 5? However, SaM knows that labels a, b,
c, and d indicate a portion of code to which SaM will jump. Each instruction below a label gets
the next address without counting the label itself. So, SaM condenses the written Samcode into a
set of instructions and their numerical addresses. Figure 1.1 shows the Program Code panel for the
above example:

The labels (<= a), (<= b), (<= c), and (<= d) indicate the names of the labels with which the
instructions had originally been labeled. For instance, PUSHIMM 3 begins with label a in the
above example.

Figure 1.1: Convoluted Program in SaM

Chapter 2 6/8
If you find labeling difficult to trace, inspect the Capture Viewer after execution. Figure 1.2 shows
the order of the instructions, using their label names, for the example in this section.

1.6 Selection Statements
Bali allows selection statements using if and else along with associated conditions and
substatements. For instance, the following Bali program tests if a variable (x) exceeds a value (2):
main {

{ int rv ; int x ; int flag ; }
{ x = 3 ;

flag = 0 ; // give flag a dummy value
if ((2 < x)) { // remember to surround expressions by ()

flag = 1 ;
}
rv = flag ; // return rv

}
}

Since 2 < 3 is true, this code returns true (1).
As shown below in Step 1, the first part of the Samcode for this Bali code uses the techniques
shown in Part 1 of the project. You will use a relative addressing approach to prepare for future
assignments with function calls:
// Step 1: Start program and set variables
ADDSP 3 // adjust SP to account for rv, x, and flag
PUSHIMM 3 // push value of 3
STOREOFF 1 // store the value 3 in address 1 for x
PUSHIMM 0 // push the value of 0 (false)
STOREOFF 2 // store the value 0 in address 2 for flag

Below, Step 2 continues the Samcode for the Bali example. To execute the if statement, SaM
first needs to evaluate a condition, which is placed on top of the stack before jumping to the
correct portion of the Samcode. To evaluate the condition 2 < x, you must retrieve the value of
2 and then push the value x. The top of the stack will be the result of evaluating the condition. By
calling LESS, SaM will push 0 (false) or 1 (true), depending on the results of the comparison,
which in this case will be 1:

Figure 1.2: Execution Order for Convoluted Example

http://courses.cs.cornell.edu/cs212/2003fa/Assignments/p1/p1cs212fa03.pdf

Chapter 2 7/8
// Step 2: Check if 2 < x
PUSHIMM 2 // push the value 2 to compare with x (Vbot)
PUSHOFF 1 // push the value of x (Vtop)
LESS // Push result of (Vbot < Vtop) to top of stack

Now that you have accounted for the condition part of the if-statement, you must jump to an
appropriate instruction. Since a condition is either true or false, use JUMPC, which has the
following behavior:

• If is true, . So, SaM will jump to the instruction with label t.
• Otherwise, . So, SaM will execute the next instruction, which is directly

underneath the JUMPC instruction.

Thus, calling JUMPC t will move to the label t if the condition is true. Otherwise, SaM will
continue executing Samcode because the condition was false.
Step 3 finishes the Samcode for the Bali example. A block of Samcode for the case when 2 < x
is true is labeled as correct, though we could have used another name. In addition, when the
if and else clauses finish, SaM needs to move to the statement after the entire selection
statement. So, we have provided another block labeled as continue to finish the remaining
program, which retrieves the value of flag (which will be 1) and returns it:
// Step 3: Process if statement
JUMPC correct // check if result of GREATER is true (1) or false (0)
 // false:
 // if you had an else in Bali, you would handle it here
JUMP continue // continue with remaining program
correct: // true:
PUSHIMM 1 // push the value 1 (true)
STOREOFF 2 // store the value true for flag
JUMP continue // continue with remaining program
continue: // continue with program:
PUSHOFF 2 // push the value of flag
STOREOFF 0 // store the value of flag in rv
ADDSP -2 // reset the SP
STOP // done with the program

As with the Bali code, you will find that the Samcode returns 1 (true). Actually, the code above is
a bit redundant. You may remove the second JUMP continue statement since SaM will “fall
through” the label after analyzing the correct block.

1.7 Repetition
Samcode uses an if-repeat structure of a loop (see Section 1.4.1.2) with judicious choice of labels
and jumps:

• Evaluate a Boolean expression, which we call the condition.
• If the condition is true, do the statements that follow the condition.
• If the condition is false, evaluate the statement that follows the while statement.
• After the statements are finished, go to test the condition again.

For example, a Bali program that increments a variable x from values 1 to 6 might be as follows:

Vtop PC t←
PC PC t+←

Chapter 2 8/8
main {
{ int x ; int rv ; }
{

x = 1 ;
while ((x < 5)) {

x = (x + 1) ;
}
rv = x ;

}
}

In Samcode, you need to encode loops with jumps and labels. Since JUMPC label jumps to
another portion of Samcode for a true condition, you will need to apply a label to the condition.
Thus, SaM will be able to keep evaluating the condition until it becomes false. At that point, you
need another jump to exit the loop. So, you need two labels in the following program:

• looplabel: the entry point for the loop in which the condition is evaluated and tested.
• continue: the statements that follow the while statement.

The program will return the final value of x, which will be 6, as shown below:
ADDSP 2 // leave space for x and rv
PUSHIMM 1 // push 1 on the stack
STOREOFF 1 // store the value 1 for x
looplabel: // label the loop starting at the condition
PUSHOFF 1 // retrieve the value of x
PUSHIMM 5 // push the value to compare x with
LESS // is x < 5 ? push 1 if so; otherwise, 0
JUMPC continue // if x < 5, do statements under continue
done: // x >= 5, so move to statement after the while-block
PUSHOFF 1 // retrieve the value of x
STOREOFF 0 // store the value of x as the rv
ADDSP -1 // deallocate x
STOP // stop processing and return the rv value
continue: // the block of statements that follow the loop
PUSHOFF 1 // retrieve the value of x
PUSHIMM 1 // push 1 onto the stack
ADD // add 1 to the current value of x
STOREOFF 1 // store the new value of x
JUMP looplabel // repeat the loop (goto loop condition)

Remember that you may choose arbitrary label names, though you should choose names that
indicate their purpose.

	Chapter 2
	1.1 Introduction
	1.2 Not the Bali in your actual project!
	1.3 Arithmetic, Declarations, and Assignments
	1.4 Fundamentals of Control Structures
	1.4.1 Goto
	1.4.1.1 Bad Goto
	1.4.1.2 Good Goto

	1.5 SaM Instructions for Control Structures
	1.5.1 Labels
	1.5.2 Jumps
	1.5.3 Addresses

	1.6 Selection Statements
	1.7 Repetition

