Announcements

- Please participate in the online Course Evaluation
 - http://www.engineering.cornell.edu/CourseEval/
 - CourseEval is open for one week only
 - Monday, Nov 26, through Sunday, Dec 2
 - Evaluations are anonymous, but the CS212 staff receives a list of those who completed an evaluation
 - Note: This is worth 1% of your 212 grade

- Part 4 is due on Friday, Nov 30
 - But we won’t count it as late as long as it’s submitted by Tuesday, Dec 4

Quick Overview

- Introduction
 - Computer architecture
 - Machine language & assembly language
 - Intro to SaM
- Compilers
 - Lexical analysis & parsing
 - Abstract Syntax Trees
 - Recursive descent parsing & code generation
- Software Engineering
 - Use of abstraction
 - Specification & validation
 - Testing & debugging
 - Models for software development
 - Top-down vs. bottom-up design

More Overview

- Implementing recursive functions
 - Stack frames
- Implementing arrays
- Implementing objects
 - Use of the Heap
 - Dispatch vectors
- Software Engineering Tools
 - Unix
 - Programming languages
 - Scripting languages
 - Regular expressions
 - Version control
 - UML
 - Profiling

CS Undergrad Areas at Cornell

- "Core" courses
 - Algorithms
 - Data structures
 - Logic
 - Programming languages
 - Scientific computing
 - Systems
 - Theory
- Elective courses
 - Artificial intelligence
 - Computer graphics
 - Computer vision
 - Databases
 - Multimedia
 - Networks

Undergrad Core

- Programming:
 - 100, 211, 212, 312
- Architecture and Systems:
 - 314 or 316, 414
- Theory and Algorithms:
 - 280, 381, 482
- Scientific Computing:
 - 321 or 322 or 421 or 428
CS Research Areas at Cornell

- **Architecture**
 - processor architecture, networking, asynchronous VLSI, distributed computing
 - CS416, CS419, CS514, CS516, CS519

- **Artificial Intelligence**
 - machine learning, natural language processing, data mining, knowledge representation, planning, reasoning under uncertainty, search, vision
 - CS472/473, CS572, CS324, CS474, CS475, CS478

- **Computational Biology**
 - sequence analysis, structure analysis, protein classification, gene networks, molecular dynamics
 - CS426, CS428

- **Databases and Digital Libraries**
 - database systems, digital libraries, data mining
 - CS230, CS330, CS430, CS431, CS432, CS433, CS485, CS578

- **Languages and Compilation**
 - programming language design and implementation, optimizing compilers, type theory, formal verification, language-based security
 - CS400, CS411, CS412/413, CS501, CS514

- **Graphics**
 - interactive rendering, global illumination, modeling, measurement, image-based modeling, perception
 - CS465, CS467/468, CS565, CS567

- **Operating Systems, Networks, and Distributed Computing**
 - operating systems, distributed computing, networking, wireless systems, security and protection
 - CS416, CS419, CS514, CS516, CS519

- **Scientific Computing**
 - numerical analysis, computational geometry, physically based animation
 - CS321, CS322, CS 421

- **Security**
 - secure network services, language-based security, mobile code, privacy, logic, verifiable systems
 - CS513

- **Theory of Computing**
 - algorithms, complexity, logic
 - CIS400, CS485, CS487

An Aside:

If you’re interested in undergraduate research

- Consider taking CS490 (Independent Research)
 - There is a link to it on the CS Dept Course page (http://www.cs.cornell.edu/Courses/index.htm)
 - Basically, you need to
 - choose an area of interest,
 - find a faculty member working in that area, and
 - come to an agreement about what you’ll do for the semester

- Take a look at the department’s Research page (http://www.cs.cornell.edu/Research/index.htm)
 - Each topic links to faculty who work on that topic

- Also, take a look at websites for individual faculty members

What I Do: Computational Geometry

- **Using a computer to solve geometric problems**
 - Get to use lots of data structure ideas
 - Example:
 - Given n line segments in the plane, report all intersections
 - Use both a PQ and a Balanced Tree

- **Areas I work in**
 - Motion Planning
 - Meshing
 - Shape Matching
 - computer vision
 - protein matching
 - Various theoretical questions

The Delaunay Triangulation

- Has the "Empty Circle Property" (each Delaunay triangle’s circumcircle is empty)
- Is commonly used for meshing

- **The Delaunay Triangulation**
 - initial sites
 - a Delaunay triangulation
 - on an empty circle

- **The Delaunay Triangulation**
 - Has the "Empty Circle Property" (each Delaunay triangle’s circumcircle is empty)
- **Is commonly used for meshing**

- **The Delaunay Triangulation**
 - initial sites
 - a Delaunay triangulation
 - on an empty circle
Meshing Requirements

- Control of element density
 - Small elements (in "interesting" regions) for accuracy
 - Large elements (elsewhere) for efficiency
- Allow internal boundaries
 - Needed to represent, e.g., a crack
- Ideally: guarantee of element quality
 - Nice, but unnecessary for a single mesh
- For many applications, we need multiple meshes as geometry changes over time

Initial Crude Mesh

During Improvement

Final Mesh

Protein Shape and URMS

- Protein function is largely based on the protein's geometric shape
- How do we analyze protein shapes?
- Our technique: URMS (Unit-vector Root Mean Square distance)
- Advantages
 - Insensitive to outliers
 - Efficient to compute
 - Equal weight for all portions

Protein Families & Consensus Shape

- Evolution theory: a protein ancient ancestor evolved into a family of proteins
- Membership in a protein family is expressed by sequence similarity, but is more strongly expressed by structure similarity
 - 25-30% sequence resemblance (almost always) ensures shape resemblance
- Goal: Create a Consensus Shape Algorithm that produces
 - a multiple alignment of structures, and
 - a single (core) structure that summarizes the structural information for a protein family
An Alpha Protein Family (Globins)

A Beta Protein Family

Unrelated Proteins

I hope Part 4 is going well
Thanks for an enjoyable semester
Good luck on any final exams!