Week 14
Review + What I Do

Announcements

- Part 4
 - There is no type-casting in Bali4, but you can assign to a supertype
 - If A is a supertype of B and aa and bb are declared as types A and B, respectively
 - aa = bb; // is legal
 - bb = aa; // is not
 - Reminder: Download the latest SaM Simulator
- Part 4 regrades
 - Grades available by Wednesday
 - Regrade requests must be in by Friday
- CMS cleaning
 - If you are still in the course, but have been removed from CMS, let me know right away
- Sections
 - There is a Section meeting today (7:30 in 205 Upson)
 - There is one Section meeting on Monday (12:20 in ???)
- Please participate in the online Course Evaluation
 - There is also a paper survey to fill out today

Quick Overview

- Introduction
 - Computer architecture
 - Machine language & assembly language
 - Intro to SaM
- Compilers
 - Lexical analysis & parsing
 - Abstract Syntax Trees
 - Recursive descent parsing & code generation
- Software Engineering
 - Use of abstraction
 - Specification & validation
 - Testing & debugging
 - Models for software development
 - Top-down vs. bottom-up design
 - Evaluating a design

More Overview

- Implementing recursive functions
 - Stack frames
- Implementing arrays
- Implementing objects
 - Use of the Heap
 - Dispatch vectors
- Software Engineering Tools
 - Unix
 - Programming languages
 - Scripting languages
 - Regular expressions
 - Makefiles
 - Version control
 - UML
 - Profiling

What I Do: Computational Geometry

- Using a computer to solve geometric problems
 - Get to use lots of data structure ideas
 - Example
 - Given n line segments in the plane, report all intersections
 - Uses both a PQ and a Balanced Tree
- Areas I work in
 - Motion Planning
 - Meshing
 - Shape Matching
 - computer vision
 - protein matching
 - More theoretical questions

The Delaunay Triangulation

- Has the “Empty Circle Property” (each Delaunay triangle’s circumcircle is empty)
- Is commonly used for meshing

- Has the “Empty Circle Property” (each Delaunay triangle’s circumcircle is empty)
- Is commonly used for meshing

initial sites
an empty circle
Adaptive Software Project (ASP)

- Adaptivity at three levels
 - Application Level
 - Choosing among physical models
 - Algorithm Level
 - Choosing among algorithms
 - System Level
 - Using system resources effectively

- Problem domains
 - Fracture mechanics
 - Reactive fluid flows

Necessary Tools

- Geometric modelers
 - Existing modelers are mostly inadequate
- Mesh generators
 - Need quality guarantees
- Visualization tools
- Components for different physical models
 - Different domains
 - Fluid flow, structural mechanics, heat flow
 - Different scales
 - Atomic scale, grain scale, structural scale
- Components for different solution techniques (algorithms)
 - Finite elements, boundary elements, finite differences, ...
- Framework for combining components
- System tools
 - Runtime environment
 - Dynamic load balancing
 - Fault tolerance (processor failure)
 - Compiler support

ASP Meshing Requirements

- Control of element density
 - Small elements (in “interesting” regions) for accuracy
 - Large elements (elsewhere) for efficiency
- Allow internal boundaries
 - Needed to represent, e.g., a crack

- Ideally: guarantee of element quality
 - Nice, but unnecessary for a single mesh
 - But we have many meshes as geometry changes over time

Initial Crude Mesh

During Improvement

Final Mesh
Protein Shape and URMS

- Protein function is largely based on the protein’s geometric shape.
- How do we analyze protein shape?
- Our technique: URMS (Unit-vector Root Mean Square distance).
- Advantages:
 - Insensitive to outliers
 - Efficient to compute
 - Equal weight for all portions.

Protein Families & Consensus Shape

- Evolution theory: a protein ancient ancestor evolved into a family of proteins.
- Membership in a protein family is expressed by sequence similarity, but is more strongly expressed by structure similarity.
 - 25-30% sequence resemblance (almost always) ensures shape resemblance.
- Goal: Create a Consensus Shape Algorithm that produces:
 - A multiple alignment of structures, and
 - A single (core) structure that summarizes the structural information for a protein family.

An Alpha Protein Family (Globins)

A Beta Protein Family

Unrelated Proteins