Week 12
Software Engineering Tools

Paul Chew
CS 212 – Spring 2004

Announcements

- Part 4
 - Will be due on last day of classes (Friday, May 7)
- No Sections today (or next week)
- Paul Chew’s Office Hour for today (W 4:30 – 5:30) is cancelled due to special computer graphics talk
 - Today’s talk
 - 4:30pm, Call Auditorium
 - Marc Levoy (Stanford)
 - The Digital Michelangelo Project
 - Tomorrow’s talk
 - 4:15pm, Call Auditorium
 - George Joblove (Sony Picture Imageworks) and Douglas Kay (Mondo Media)
 - Digital Imagery in Entertainment

Unix

- Original version by Ken Thompson (Bell Labs) in 1969
- An interactive, multi-user operating system (not the first such system, but an early one)
- Unix is closely tied to the development of C
 - Unix was originally written in PDP-7 Assembly Language
 - Then in B
 - Then in C
 - B and C were basically created to write Unix
- Philosophy
 - Almost everything is a text file
 - Little programs (utilities) to do little tasks
 - Connect programs with pipes & redirection
 - % who | sort | lpr
 - Print an alphabetical list of who is active on the system
- Linux is an open software version of Unix
 - Since 1991
 - Linus Torvalds (the kernel)
 - Richard Stallman (GNU)
- Widely used for high-performance computing

Programming Languages

- Some of the languages used in CS Dept
 - C, C++, C#
 - Many of the upper level courses (networks, distributed computing)
 - Java
 - 100, 211, 212
 - Matlab
 - 100M, numerical analysis courses
 - ML
 - functional programming
 - 312, logic-related courses
- ... Some other languages (from a Yahoo list)
 - ABC, ActiveX, Ada, AMIGOS, APL, Assembler, Assembly, awk, BASIC, BETA, C and C++, C, Delphi, Cilk, COBOL, COBOL 85, CT, CTurk, Dylan, Dynaflow, Eficii Fort, Forth, Guler, Haskell, Icon, IDL, Imler, Intercon, J, Java, JavaScript, JCL, JOVIAL, LISP, Logos, M, MUMPS, Mumps, M, Module-2, Module-3, Oberon, Objev, Occam, OpenPL, Pascal, Perl, PL/I, Pop, PostScript, Program, Prolog, Python, Rexx, Ruby, SAS, Sather, Scheme, ScriptEase, SQL, Self, SETL, Smalltalk, SQL, Tcl/Tk, TOM, Verilog, VHDL, VRML, Visual, Visual Basic, Z

Scripting Languages

- A script is a sequence of common commands made into a single program
 - Unix uses shell scripts
 - The shell is the interactive interface to Unix
 - You can combine commands from the Unix shell to create programs
 - A scripting language is
 - Usually easy to learn
 - Interpreted instead of compiled

Example scripting languages:
Unix shell, Python, Perl, Tcl (Tool command language)

Some Python code:
```python
class Stack (object):
    def __init__ (self):
        self.stack = []
    def put (self, item):
        self.stack.append(item)
    def get (self):
        return self.stack.pop()
    def isEmpty (self):
        return len(self.stack) == 0
```

Regular Expressions

- Common goal: search/match/do stuff with strings
- Idea: use special strings to match other strings
 - Some characters are meta-characters
- Regular expressions are closely related to finite state automata (CS 381/481)

Some of the rules for regular expressions

- A regular character matches itself
- A, matches any character
- * implies 0 or more occurrences (of preceding item)
- + implies 1 or more occurrences
- [] implies following character is treated as a regular character
- ([]) matches any one character from within the brackets - can be used to indicate a range
- [0-9]+ | [0-9] [0-9]
Makefiles

- Used when compiling/recompiling a large system (several interdependent files)
 - Checks which files have changed and only recompiles those that are necessary
 - Because of dependencies, more than just the changed files can need to be recompiled
 - Of course, can always recompile everything, but this can be too expensive
- Once you have a makefile
 - You recompile whatever is necessary by typing make
- To create a makefile
 - Usual strategy is to find some examples and modify them
 - There are automated tools for building makefiles

Version Control

- Allows you to keep track of changes for a large project
 - Can back up to old version if changes create problems
 - How do you determine where your program is spending its time?
- CVS (Concurrent Version System)
 - Open source
 - Widely used tool for version control
 - Maintains a history of all changes made
 - Supports branching, allowing several lines of development
 - Provides mechanisms for merging branches back together when desired

UML

- UML
 - = Unified Modeling Language
 - Design tool for object oriented programming
 - System for showing the interaction of objects

Profiling

- The goal is to make a program run faster
 - Rule of thumb: 80% of the time is spent in 20% of the code
 - No use improving the code that isn’t executed often
 - How do you determine where your program is spending its time?
 - People are notoriously bad at predicting the most computationally expensive parts of a program
 - Part of the data produced by a profiler (Python)

Bali for Part 4

- Adds classes (and fields and methods) with single inheritance
- Does not remove functions
 - There is still a main-function, executed when program is run

class Stack{
 private Node top;

 public void put(int i) {
 top = new Node(i, top);
 return;
 }

 public int get() {
 Node n;
 n = top;
 top = top.link;
 return n.data;
 }
}

New Bali Syntax

class -> class name {{ name } } { fieldDeclaration* }
 { constructor* }
 { method* }

fieldDeclaration -> modifier variableDeclaration
constructor -> modifier name {{ parameters } } functionBody
method -> modifier function
modifier -> public | private