
Regex Basics Basic Patterns Combinations Java Exercise

CS 2112 Lab 7: Using Regular Expressions

March 17–19, 2014

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Regex Overview

I Regular Expressions, also known as ‘regex’ or ‘regexps’ are a
common scheme for pattern matching

I regex supports matching individual characters as well as
categories and ranges

I A regular expression is represented as a single string and
defines a set of matching strings

I Java supports Perl-style regular expressions through
java.util.regex

I Regex terminology and notation is variable from source to
source; almost everything presented here has other names in
certain contexts.

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Quantifiers

I Quantifiers specify how many of a pattern to match

I 0 matches only the string 0

I 0* matches any number of 0’s, including the empty string

I 0+ matches one or more 0

I 0? matches 0 or them empty string

I 0{3,5} matches 000 or 00000

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Ranges and groups

I Ranges and groups specify a category of characters

I (1) is a group and [1] is a range.

I (0|1) and [01] both match 0 or 1

I (10) matches the string 10 but not 1 or 0 alone

I (ab|cd) will not match acbd but [abcd] will

I [a-z] matches any lowercase letter

I [0-9] matches any digit

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Negation

I The ˆ character inside a range is the logical negation operator

I [^0] matches anything but 0

I [^abc] matches anything but abc

I [^a-z] matches anything but lowercase letters

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Escapes

I regex uses the standard escape sequences like \n, \t, \\
I Characters used in quantifiers and groups must also be

escaped

I this includes \+ \(\. \^ among others.

I Interestingly (or annoyingly) $ is escaped as $$

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Character Classes

I A character class is a symbol that represents more then one
character.

I In most cases the capital letter is the negation of the lowercase

I \d = [0123456789], \D = [^0123456789]

I \s matches white space

I \w matches a “word”, a block of characters surrounded by
white space or punctuation.

I . matches anything but a newline

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Combinations

I Ranges and Quantifiers mix to give useful expressions

I [a-z]* matches any number of consecutive lowercase
characters

I [0-9]+ matches all numbers

I [0-9]3 matches all three digit numbers

I [A-z]4 matches all four letter words

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Chaining

I Multiple combinations start to get at the real power of regex

I [A-z]1[0-9]1 matches things like A1, B6, q0, etc.

I [A-Z]1[a-z]* [A-z][a-z]* matches a properly capitalized
first and last name (unless you have a name like O’Brian or
McNeil)

I [a-z]2,3[0-9]+ matches Cornell net-ids.

I In Java, but not in general, [ab][cd] means the union of two
ranges, not the intersection.

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Java.lang.String

The easiest way to start using regular expressions in Java is
through methods provided by the String class. Two examples are
String.split(String) and
String.replaceAll(String,String).

1 String TAs = "Reese&Matt&Clara&Ari"; //No offense ,Dan

1 String [] arr = TAs.split("&");

2 for(String s : arr){ System.out.println(s);}

1 System.out.println(TAs.replaceAll("&[^&]+", "&Reese"));

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Java.util.regex

I More powerful operations are unlocked by the
Java.util.regex package.

I There are two main classes in this package Pattern and
Matcher

I Pattern objects represent regex patterns have a method to
return a Matcher that allows the pattern to be used.

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Java.util.regex.Pattern

I The Pattern object has no constructor and instead has a
compile method that returns a Pattern object.

I The Java specific version of regular expressions is documented
on the Pattern api page, and is well worth reading.

I Note that you must escape your backslashes when coding
literals

1 Pattern p1 = Pattern.compile("[a-z]{2 ,3}\\d+");

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Java.util.regex.Matcher

I Matcher does the actual matching work, as the name
suggests. Again there is no constructor, but instead a method
inside Pattern that allows you to get a Matcher object set to
match on a specific string.

I The principal operations of the Matcher are matches and
find. matches returns true if the entire string matches the
pattern, find returns true if any part of the string matches
the pattern

I Matcher also has methods for operations such as replacement
or group capturing.

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Replacement example

This example is from the api page:

1 Pattern p = Pattern.compile("cat");

2 Matcher m = p.matcher("one cat two cats in the yard");

3 StringBuffer sb = new StringBuffer ();

4 while (m.find ()) {m.appendReplacement(sb , "dog");}

5 m.appendTail(sb);

6 System.out.println(sb.toString ());

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Capture example

Here is another example this time used to capture a match:

1 Pattern p1 = Pattern.compile("([a-z]{2 ,3}\\d+)@.+");

2 Matcher m = p1.matcher("rpg55@cornell.edu");

3 System.out.println("First group: "+m.group (1));

CS 2112 Lab 7: Using Regular Expressions

Regex Basics Basic Patterns Combinations Java Exercise

Command line parsing

I Regex can be used to parse command line inputs, capturing
can be used to grab the different tags and access them

I Write a calculator using regex that takes commands of the
form:
num num -f or num -f num or -f num num

Where num represents a positive decimal number (with or
without a decimal point) and -f is the operation flag, one of
-+ -- -* -/ or -%.

I Parse the input and then print the result of the math. Assume
no white space pre-parsing.

CS 2112 Lab 7: Using Regular Expressions

	Regex Basics
	Basic Patterns
	Combinations
	Java
	Exercise

