Lecture 24: hashing

- Map interface
- Hash tables
- Hash codes
- Chaining
Map (also a dictionary, hash table)
- Store values associated with keys.
- Put a new value with a given key.
- Check to see if my value associated with a given key.
- Look up value for a given key.

Examples:
- Keys: words, values: definitions.

Possible implementations:
- Linked list
 - Key position in list (wiers)
 - Value: whatever is stored there.

```
  a1 -> a2 -> a3 -> \ldots
  put (5, D)
  - extend list
  - update to add D
  c1 -> c2 -> c3 -> c4 -> c5
```

- Hash???
 - Look up element with a given index?

```
  o
  / \      \\
  e   d    c  b  a

  Doesn't help.  (Why set k(x)?
  Have to search entire list.)
```

- Array: if keys are small integers
 - Put (i, v)
 - exact where
 - Get (i) return a[i] \(\in O(1) \)

- Binary search tree
 - Good for large, ordered keys.
 - Put: enter into tree \(\in O(\log n) \) time.
 - Look up: follow path to desired key, \(\in O(\log n) \) time (balanced tree).
Big simplifying assumption: assume data is perfectly "spread out"

Ex: assume data are names, assume as many names start with "a" as with "b"

```
'\(a\)  
  \n    \rightarrow Alice \rightarrow Aaron

'\(b\)  
  \n    \rightarrow Carmen \rightarrow Camilla

'\(c\)  
  \n    \rightarrow greg \rightarrow greg

'\(d\)  
  \n    \rightarrow Ted \rightarrow Zoe
```

\(n\) entries in table

\(N\) buckets

- to look up "John", what do I do?
 - go to John's bucket (bucket \(J\))
 - \(O(1)\) time
 - search through \(J\)'s
 - comparing each to "John"
 - By "magic assumption" each bucket has about \(\frac{n}{N}\) elements,
 - \(O(\frac{n}{N}) = O(1)\) time.

idea: let's make \(d\) constant by necessarily \(N\) as \(n\) increases.
Maintain $\alpha \leq 2$.

When adding an element, if $n > 2N$, i.e., $\alpha \geq 2$, we'll double N.

- Make a new array of buckets (size $2N$)
- Copy everything from old array to new (in correct bucket)
- For each elt & all links: compute bucket in new & old, add elt to new bucket $O(1)$ times

$O(1)$ per element in table.

Takes $O(n)$ time only after doing $2N$ insertions.

Can do m insertions in $O(n)$ time, even though in worst case, I need $O(n)$ for one insertion
(takes only happens once per insertion)

Amortized Constant Time
In practice, data is not uniformly distributed.

Worst-case: all keys entries are in some bucket, looking takes $O(n)$ for every entry (not $O(n)$)

Cluster: lots of data in the same bucket.

Generalization: need to associate each key in a general way.

Idea: associate hash code with each key.

Example: function assigns a number to each key:

- Alice: 17
- Karen: 32
- Allie: 6
- Ted: 0
- Lee: 1000

- Can easily compute hash of any key.
- If two keys are equal, hashes should be equal.
- Should be "spread out": if two keys are different, they are unlikely to hash to same bucket (i.e. to have same hash code.)
Hash table: array of N buckets, each containing a list of entries.

- Each entry in bucket b has a key whose hash code is $b \mod N$.
 - If we wrap around, i.e. remainder of hash code / N is b.

- No special structure within buckets (unsorted linked list).

To lookup key k:
- Hash k to find bucket b.
- Linear search in bucket b for key k.

Amortized constant time $O(1)$.

To insert value with key k:
- Check if need to double size (i.e. if $N \leq 2N$).
- Compute bucket by hashing k, taking remainder.
- Insert (k,v) in bucket b.
Closed chaining

if load factor is < 1, there is
more space in the array of buckets
than elements in table

open chaining

goal: have:

closed chaining
need to find “backup location” in our
storage array, to handle collisions.

strategy for finding backup location:

- if a slot is full, go to
 next slot.

- hash the bucket id to
 find “backup” bucket

bucket of bucket b
(bucket holds x)

N=8

A

B

1
2
3
4
5
6
7

C

D

0