Lecture 20: Shortest paths, min. spanning trees

- Dijkstra's shortest path algorithm
- Greedy algorithms
- Prim's algo. for min. spanning trees

Announcements:
- PS 5 out soon
for all verts reachable from start are visited */
DFS (start)
worklist = new Set<Vert>
worklist.add (start)
visited = φ
while worklist ≠ φ
 for each edge v→w
 if w not in worklist
 add w to worklist
 mark v visited
end

BFS (start)
worklist = new Set<Vert>
worklist.add (start)
visited = φ
while worklist ≠ φ
 while worklist ≠ φ
 for each edge w→v
 if v not in visited
 visited.add (v)

Notation:

u, v are vertices
u→v there is an edge from u to v.
\(u \leadsto v \) there is a path of 0 or more edges from u to v.
\(u \leadsto u' \leadsto u'' \leadsto \ldots \leadsto v \)
da+b+c+...+dn
precondition: all edge weights are ≥ 0

Data structure:
- Min-heap
- Lookup structure (like in Dijkstra)
Dijkstra's:

Invariant:
- Visited list has all \(v \) with minimal path
- Started \(v \) in entire graph

Worklist: each \(v \) has minimal path
- starts in \(u \rightarrow v \)
- visited

\[\text{Worklist: } (\text{start}, 0, \frac{1}{2} \text{ (heap)} \]
\[\text{visited} = \emptyset \]

\[\text{while worklist } \neq \emptyset : \]
- \(O(1) \) happens once.

\[\text{total time } \leq O(\log V) \]

\[\text{total time: } O(\log n \cdot |E|) \]
- happens for each edge

\[|E| \leq |V|^2 \]

\[a = \text{size of worklist } \leq |V| \]

\[O((|V| + |E|) \log |V|) \] is \(O(|V|^2 \log |V|) \).

\[|E| \leq |V|^2 \]

\[|E| \times |V| \quad O(|V| \log |V|) \leq \]
A path $u \rightarrow v$ is a sequence of edges $u \rightarrow u' \rightarrow u'' \rightarrow \cdots \rightarrow v$

A cycle is a non-empty path from $v \rightarrow v$.

G is cyclic if it contains any cycles, acyclic otherwise.

DAG: directed acyclic graph.

(in undirected graphs)

A tree T is a graph satisfying 3 properties:

1. T is acyclic
2. T is connected
 (a collection of trees is a forest)
3. $\#\text{ vert of } T = \#\text{ edges} + 1$

1 and 2 imply 3
2 and 3 imply 1
1 and 3 imply 2