Lecture 15: Loop invariants

- How to develop loops, guarantee correctness
- Also: finishing heaps, start sorting

Announcements

- P3 extension (again)
- No T+T discussion
- Two surveys (sorry!)
Heap implements `PriorityQueue`:
- `assert(value, priority)`
- `removeMax()`
- `findMax()`

Heap implementation:
- linear tree satisfying:
 1. each node is larger than its children
 2. the tree is full
- `max` is at root
- to insert: put new val in last pos
 - swap with parent & repeat as necessary to satisfy max 1.

`remove Max()`:
1. replace the root with the last leaf
2. swap root with larger of its children

repeat until invariant 2. is broken

Class invariants

not full!
loop invariant: something you know is true in each iteration of a loop.

Example: remove from heap.
 - save root value to return
 - swap last value in for root (remove it).

To develop a loop (4 loopy questions):

- INIT: does it start right?
 set variables so that preconditions make invariant true

- TERMINATE: does it end right?
 create loop guard that, with invariants, guarantees postcondition

- PROGRESS: will it end?
 start loop body by making progress towards term. cond.

- PRESERVATION: is it invariant?
 finish loop body by ensuring that invariant still holds after