Lecture 14: Complexity & Heaps

- Review/catch-up for prof. C.
- Heap data structure

Announcements:
- P3 extension to tomorrow @ 5PM
- Poll/survey coming soon.
f is $O(g)$ means:
- want to ignore constant speedups
 (e.g. run alg. on comp. that's $2x$ faster)
- ignore what happens for small inputs.
 (no's trivial optimization)

Consider just upper bounds
(won't take more time than n steps)

f is $O(g)$ means
- there exists constants n_0, c
 such that
- for any $n > n_0$
 $f(n) \leq cg(n)$

\[n \]
Divide & Conquer

for each input:
do something
in constant time.

for each input:
for each input:
do something
(prohibitively expensive)

Search or Optimization

\[n \log n \rightarrow \text{sorting} \]

\[\log_2 n \rightarrow \text{log2 of digits} \]

\[n \rightarrow \text{# of digits} \]

\[n \rightarrow \text{size of digits} \]

Input: size 10,000

- Split into 10,
 recursively handle one
 (size 1,000)

- Split again
 (size 100)

- Split again
 (size 10)

- Base case
 (size 1)
Priority Queue:
- collection
 - add an item with a priority
 - remove and return the item
 with maximum priority.

Implementation:
- linked list (store (priority, item) pairs)
 - Item 1, priority 7
 - Item 2, priority 5
 - add an item: put at beginning
 (constant time)
 - find/remove max priority:
 search through list,
 $O(n)$ time.

- ordered linked list
 - maximum priority element is always
 at head; find/remove max is
 constant time.

- binary search tree

- sorted array
 - same issues as above
 - need to move elements over
 to make space for new elt

 - linear time in worst case
 (unbalanced)
 - hard (expensive) to maintain
 balance.

Linear time in worst case

Linear time insert, but can use
binary search.
A heap is a binary search tree with the following invariants:

1. The value of every node is greater than (or equal to) the priority of both of its children.
 (Note: no requirement between siblings.)

2. The tree is full.
 - Perfect: all paths have the same length
 - Full: all levels are full, except possibly the last, which is filled left-to-right.
How to

- find largest element in a heap?
 - it's at the top!

- remove largest element in a heap?

- insert a new element?

1. node larger than its children
2. heap is full.

Insert value 12
(ignoring 1st invariant)

Swap parent of new node & its two children
so biggest is at top.

Step to maintain invariant

Since 12 < 17,
both invariants satisfied.