“Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better.”

- Edsger Dijkstra
“I didn't have time to write a short letter, so I wrote a long one instead.”

- Mark Twain
What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?
- Faster?
- Less space?
- Simpler?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?
Basic Step: one “constant time” operation

Constant time operation: its time doesn’t depend on the size or length of anything. Always roughly the same. Time is bounded above by some number.

Basic step:
- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field ***
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)
// Store sum of 1..n in sum
sum = 0;

// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k + 1) {
 sum = sum + k;
}

All basic steps take time 1. There are n loop iterations. Therefore, takes time proportional to n.
Not all operations are basic steps

```c
// Store n copies of ‘c’ in s
s = "";

// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1) {  
    s = s + 'c';
}
```

```
Statement:                  # times done
s = "";                     1
k = 1;                      1
k <= n                      n+1
k = k+1;                    n
s = s + 'c';                n
Total steps:                3n + 3
```

Catenation is not a basic step. For each k, catenation creates and fills k array elements.
String Catenation

s = s + “c”; is NOT constant time. It takes time proportional to 1 + length of s
Basic steps executed in `s = s + 'c';`

`s = s + 'c'; // Suppose length of s is k`

1. Create new String object, say C basic steps.
2. Copy k chars from object s to the new object: k basic steps.
3. Place char ‘c’ into the new object: 1 basic step.
4. Store pointer to new object into s: 1 basic step.
Total of $(C+2) + k$ basic steps.

In the algorithm, `s = s + 'c';` is executed n times:

- `s = s + 'c';` with length of $s = 0$
- `s = s + 'c';` with length of $s = 1$
- ...
- `s = s + 'c';` with length of $s = n-1$

Total of $n*(C+2) + (0 + 1 + 2 + … + n-1)$ basic steps
Basic steps executed in \(s = s + 'c' \);

\[s = s + 'c'; \] // Suppose length of \(s \) is \(k \)

In the algorithm, \(s = s + 'c' \) is executed as follows:

- \(s = s + 'c'; \) with length of \(s = 0 \)
- \(s = s + 'c'; \) with length of \(s = 1 \)
- ...
- \(s = s + 'c'; \) with length of \(s = n-1 \)

Total of \(n*(C+2) + (0 + 1 + 2 + \ldots n-1) \) basic steps

\[
0 + 1 + 2 + \ldots n-1 = \frac{n(n-1)}{2}. \text{ Gauss figured this out in the 1700's}
\]

\[
= \frac{n^2}{2} - \frac{n}{2}.
\]

mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html
Basic steps executed in \(s = s + 'c'; \)

\[
s = s + 'c'; \quad // \text{Suppose length of } s \text{ is } k
\]

In the algorithm, \(s = s + 'c'; \) is executed as follows:

\[
s = s + 'c'; \quad \text{with length of } s = 0
\]
\[
s = s + 'c'; \quad \text{with length of } s = 1
\]
\[
\ldots
\]
\[
s = s + 'c'; \quad \text{with length of } s = n-1
\]

Total of \(n(C+2) + (0 + 1 + 2 + \ldots + n-1) \) basic steps

Total of \(n(C+2) + \frac{n^2}{2} - \frac{n}{2} \) basic steps

Total of \(n(C+2) + \frac{n^2}{2} - \frac{n}{2} \) basic steps. Quadratic in \(n \).
Not all operations are basic steps

// Store n copies of ‘c’ in s
s = "";

// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1) {
 s = s + 'c';
}

Total steps:
2n + 3 +
n*(C+2) + n^2/2 – n/2
for s = s + ‘c’;

Statement: # times # steps
s = ""; 1 1
k = 1; 1 1
k <= n n+1 1
k = k+1; n 1
s = s + 'c'; see to left

Total steps: ...
Linear versus quadratic

// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k+1)
 sum = sum + n

// Store n copies of ‘c’ in s
s = “”;
// inv: s contains k-1 copies of ‘c’
for (int k = 1; k = n; k = k+1)
 s = s + ‘c’;

Linear algorithm

Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What’s important is that

One is linear in n — takes time proportional to n
One is quadratic in n — takes time proportional to n^2
Looking at execution speed

Number of operations executed

2n+2, n+2, n are all linear in n, proportional to n

2n + 2 ops
n + 2 ops
n ops

Constant time

size n of the array
What do we want from a definition of “runtime complexity”?

1. Distinguish among cases for large n, not small n

2. Distinguish among important cases, like
 - n*n basic operations
 - n basic operations
 - log n basic operations
 - 5 basic operations

3. Don’t distinguish among trivially different cases.
 - 5 or 50 operations
 - n, n+2, or 4n operations
"Big O" Notation

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $N \geq 0$ such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

Intuitively, $f(n)$ is $O(g(n))$ means that $f(n)$ grows like $g(n)$ or slower.

Get out far enough (for $n \geq N) f(n)$ is at most $c \cdot g(n)$
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

Methodology:

Start with \(f(n)\) and slowly transform into \(c \cdot g(n)\):

- Use \(=\) and \(\leq\) and \(<\) steps
- At appropriate point, can choose \(N\) to help calculation
- At appropriate point, can choose \(c\) to help calculation
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

\[
\begin{align*}
f(n) &= 2n^2 + n \\
\leq& \quad \text{for } n \geq 1, \ n \leq n^2 \\
&= 2n^2 + n^2 \\
&= 3*n^2 \\
&= 3*g(n)
\end{align*}
\]

Transform \(f(n)\) into \(c \cdot g(n)\):
- Use =, \(\leq\), < steps
- Choose \(N\) to help calc.
- Choose \(c\) to help calc

Choose \(N = 1\) and \(c = 3\)
Prove that $100 \, n + \log n$ is $O(n)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $N \geq 0$ such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

$$f(n) = \begin{cases} \text{<put in what } f(n) \text{ is>} \end{cases}$$

$100 \, n + \log n$

$\leq \begin{cases} \text{<We know } \log n \leq n \text{ for } n \geq 1> \end{cases}$

$100 \, n + n$

$= \begin{cases} \text{<arith>} \end{cases}$

$101 \, n$

$= \begin{cases} \text{<g(n) = n>} \end{cases}$

$101 \, g(n)$

Choose $N = 1$ and $c = 101$
But what’s origin of complexity?

- Computing a theory of all knowledge
- Some of my own thoughts