JavaHyperText Topics

“Graphs”, topics 1-3

1: Graph definitions
2: Graph terminology
3: Graph representations
Charts (aka graphs)
Graphs

- **Graph:**
 - [charts] **Points** connected by **curves**
 - [in CS] **Vertices** connected by **edges**

- Graphs generalize trees

- Graphs are relevant far beyond CS...examples...
Vertices: people “from”
Edges: friendships

https://medium.com/@johnrobb/facebook-the-complete-social-graph-b58157ee6594
Vertices: subway stops
Edges: railways
Vertices: stations
Edges: cables

https://www.submarinecablemap.com/
Vertices: State capitals
Edges: “States have shared border”

http://www.cs.cmu.edu/~bryant/boolean/maps.html
Graphs as mathematical structures
An **undirected** graph is a pair \((V, E)\) where

- \(V\) is a set
 - Element of \(V\) is called a **vertex** or **node**
 - We’ll consider only finite graphs
 - \(Ex: \ V = \{A, B, C, D, E\}; \ |V| = 5\)

- \(E\) is a set
 - Element of \(E\) is called an **edge** or **arc**
 - An edge is itself a two-element set \(\{u, v\}\) where \(\{u, v\} \subseteq V\)
 - Often require \(u \neq v\) (i.e., no **self-loops**)
 - \(Ex: \ E = \{\{A, B\}, \{A, C\}, \{B, C\}, \{C, D\}\}, \ |E| = 4\)
A **directed** graph is similar except the edges are **pairs** \((u, v)\), hence order matters.

\[V = \{A, B, C, D, E\} \]
\[E = \{(A, C), (B, A), (B, C), (C, D), (D, C)\} \]
\[|V| = 5 \]
\[|E| = 5 \]
Convert undirected ⇔ directed?

- Right question is: convert and maintain which properties of graph?
- Convert undirected to directed and maintain paths?
Paths

- A **path** is a sequence \(v_0, v_1, v_2, ..., v_p\) of vertices such that for \(0 \leq i < p\),
 - Directed: \((v_i, v_{i+1}) \in E\)
 - Undirected: \(\{v_i, v_{i+1}\} \in E\)
- The **length** of a path is its number of edges

Path: \(A, C, D\)
Convert undirected ↔ directed?

- Right question is: convert and maintain which properties of graph?

- Convert undirected to directed and maintain paths:
 - Nodes unchanged
 - Replace each edge \(\{u,v\} \) with two edges \(\{(u,v), (v,u)\} \)

- Convert directed to undirected and maintain paths:
 Can’t:
Labels

Whether directed or undirected, edges and vertices can be labeled with additional data.

Nodes already labeled with characters:

Edges now labeled with integers:
Discuss

How could you represent a maze as a graph?

Algorithms, 2nd ed., Sedgewick, 1988
Announcement

A4: See time distribution and comments @735

- Spending >16 hours is a problem; talk to us or a TA about why that might be happening

- Comments on the GUI:
 - “GUI was pretty awesome.”
 - “I didn't see the relevance of the GUI.”

- Hints:
 - “Hints were extremely useful and I would've been lost without them.”
 - “Hints are too helpful. You should leave more for people to figure out on their own.”

- Adjectives:
 - “Fun” (x30), “Cool” (x19)
 - “Whack”, “Stressful”, “Tedious”, “Rough”
Graphs as data structures
Graph ADT

Operations could include:

- Add a vertex
- Remove a vertex
- Search for a vertex
- Number of vertices
- Add an edge
- Remove an edge
- Search for an edge
- Number of edges
Graph representations

- Two vertices are **adjacent** if they are connected by an edge.
- Common graph representations:
 - Adjacency list
 - Adjacency matrix

![Running example graph](image)

running example (directed, no edge labels)
Adjacency “list”

- Maintain a collection of the vertices
- For each vertex, also maintain a collection of its adjacent vertices

- Vertices: 1, 2, 3, 4

- Adjacencies:
 - 1: 2, 3
 - 2: 4
 - 3: 2, 4
 - 4: none

Could implement these “lists” in many ways...
Adjacency list implementation #1

Map from vertex label to sets of vertex labels

1 ↦ \{2, 3\}
2 ↦ \{4\}
3 ↦ \{2, 4\}
4 ↦ \{none\}
Linked list, where each node contains vertex label and linked list of adjacent vertex labels
Adjacency list implementation #3

Array, where each element contains linked list of adjacent vertex labels

Requires: labels are integers; dealing with bounded number of vertices
Adjacency “matrix”

- Given integer labels and bounded # of vertices...
- Maintain a 2D Boolean array \(b \)
- Invariant: element \(b[i][j] \) is true iff there is an edge from vertex \(i \) to vertex \(j \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Adjacency list vs. Adjacency matrix

Efficiency: Space to store?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- **Adjacency list:** $O(|V| + |E|)$
- **Adjacency matrix:** $O(|V|^2)$
Adjacency list vs. Adjacency matrix

Efficiency: Time to visit all edges?

\[\mathcal{O}(|V| + |E|) \] \hspace{2cm} \mathcal{O}(|V|^2)
Adjacency list vs. Adjacency matrix

Efficiency: Time to determine whether edge from v_1 to v_2 exists?

$O(|V| + |E|)$

Tighter: $O(|V| + \# \text{ edges leaving } v_1)$

$O(1)$
More graph terminology

- Vertices u and v are called
 - the source and sink of the directed edge (u, v), respectively
 - the endpoints of (u, v) or \{u, v\}

- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source

- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink

- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint
Adjacency list vs. Adjacency matrix

Efficiency: Time to determine whether edge from v_1 to v_2 exists?

$O(|V| + |E|)$

Tighter: $O(|V| + \text{outdegree}(v_1))$

$O(1)$
Adjacency list vs. Adjacency matrix

<table>
<thead>
<tr>
<th>List</th>
<th>Property</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>$O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>$O(</td>
<td>V</td>
<td>+ \text{od}(v_1))$</td>
</tr>
</tbody>
</table>
Adjacency list vs. Adjacency matrix

<table>
<thead>
<tr>
<th>List</th>
<th>Property</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>(O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>(O(</td>
<td>V</td>
<td>+ \text{od}(v_1)))</td>
</tr>
</tbody>
</table>

Max # edges = \(|V|^2\)
Adjacency list vs. Adjacency matrix

<table>
<thead>
<tr>
<th>List</th>
<th>Property</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>$O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>$O(</td>
<td>V</td>
<td>+ \text{od}(v_1))$</td>
</tr>
</tbody>
</table>

Sparse: $|E| \ll |V|^2$

Dense: $|E| \approx |V|^2$

Max # edges $= |V|^2$
Adjacency list vs. Adjacency matrix

<table>
<thead>
<tr>
<th>List</th>
<th>Property</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>$O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>$O(</td>
<td>V</td>
<td>+ \text{od}(v_1))$</td>
</tr>
</tbody>
</table>

Sparse graphs Better for **Dense graphs**

Sparse: $|E| \ll |V|^2$

Dense: $|E| \approx |V|^2$

Max # edges $= |V|^2$