GRAPHS

Lecture 17
CS 2110 — Spring 2019

JavaHyperText Topics

- "Graphs", topics 1-3
- □ 1: Graph definitions
- 2: Graph terminology
- 3: Graph representations

Charts (aka graphs)

Graphs

- □ Graph:
 - [charts] Points connected by curves
 - □ [in CS] Vertices connected by edges
- Graphs generalize trees
- □ Graphs are relevant far beyond CS...examples...

https://medium.com/@johnrobb/facebook-the-complete-social-graph-b58157ee6594

Vertices: people "from" Edges: friendships

Vertices: stations Edges: cables

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Vertices: State capitals

Edges: "States have shared border"

Graphs as mathematical structures

Undirected graphs

An undirected graph is a pair (V, E) where

- □ V is a set
 - Element of V is called a vertex or node
 - We'll consider only finite graphs
 - \blacksquare Ex: $V = \{A, B, C, D, E\}; |V| = 5$
- □ E is a set
 - Element of E is called an edge or arc
 - \blacksquare An edge is itself a two-element set $\{u, v\}$ where $\{u, v\} \subseteq V$
 - \square Often require $u \neq v$ (i.e., no self-loops)
 - \blacksquare Ex: $E = \{\{A, B\}, \{A, C\}, \{B, C\}, \{C, D\}\}, |E| = 4$

Directed graphs

A directed graph is similar except the edges are pairs (u, v), hence order matters

$$V = \{A, B, C, D, E\}$$

 $E = \{(A, C), (B, A), (B, C), (C, D), (D, C)\}$
 $|V| = 5$
 $|E| = 5$

Convert undirected ← → directed?

- Right question is: convert and maintain which properties of graph?
- Convert undirected to directed and maintain paths?

Paths

- □ A path is a sequence $v_0, v_1, v_2, ..., v_p$ of vertices such that for $0 \le i < p$,
 - □ Directed: $(v_i, v_{i+1}) \in E$
 - □ Undirected: $\{v_i, v_{i+1}\} \in E$
- The length of a path is its number of edges

Convert undirected ← → directed?

- Right question is: convert and maintain which properties of graph?
- Convert undirected to directed and maintain paths:
 - Nodes unchanged
 - Replace each edge {u,v} with two edges {(u,v), (v,u)}
- Convert directed to undirected and maintain paths:
 Can't:

Labels

Whether directed or undirected, edges and vertices can be **labeled** with additional data

Nodes already labeled with characters

Edges now labeled with integers

Discuss

How could you represent a maze as a graph?

Algorithms, 2nd ed., Sedgewick, 1988

Announcement

A4: See time distribution and comments @735

- Spending > 16 hours is a problem; talk to us or a TA about why that might be happening
- Comments on the GUI:
 - "GUI was pretty awesome."
 - "I didn't see the relevance of the GUI."
- Hints:
 - "Hints were extremely useful and I would've been lost without them."
 - "Hints are too helpful. You should leave more for people to figure out on their own."
- Adjectives:
 - □ "Fun" (x30), "Cool" (x19)
 - "Whack", "Stressful", "Tedious", "Rough"

Graphs as data structures

Graph ADT

Operations could include:

- □ Add a vertex
- □ Remove a vertex
- □ Search for a vertex
- □ Number of vertices
- □ Add an edge
- □ Remove an edge
- Search for an edge
- Number of edges

Graph representations

- Two vertices are adjacent if they are connected by an edge
- Common graph representations:
 - Adjacency list
 - Adjacency matrix

running example (directed, no edge labels)

Adjacency "list"

- Maintain a collection of the vertices
- For each vertex, also maintain a collection of its adjacent vertices

- □ Vertices: 1, 2, 3, 4
- Adjacencies:
 - **1**: 2, 3
 - **2:** 4
 - **3**: 2, 4
 - □ 4: none

Adjacency list implementation #1

Map from vertex label to sets of vertex labels

```
1 \mapsto \{2, 3\}
```

$$2 \mapsto \{4\}$$

$$3 \mapsto \{2, 4\}$$

$$4 \mapsto \{\text{none}\}$$

Adjacency list implementation #2

Linked list, where each node contains vertex label and linked list of adjacent vertex labels

Adjacency list implementation #3

Array, where each element contains linked list of adjacent vertex labels

Adjacency "matrix"

- ☐ Given integer labels and bounded # of vertices...
- □ Maintain a 2D Boolean array **b**
- Invariant: element b[i][j] is true iff there is an edge from vertex i to vertex j

	0	1	2	3	4
0	F	F	F	F	F
1	F	F	T	T	F
2	F	F	F	F	Т
3	F	F	T	F	T
4	F	F	F	F	F

Efficiency: Space to store?

$$O(|V| + |E|)$$

$$O(|V|^2)$$

1 2 3	
2	
3 2 4	
4	

	0	1	2	3	4
0	F	F	F	F	F
1	F	F	T	T	F
2	F	F	F	F	T
3	F	F	T	F	T
4	F	F	F	F	F

Efficiency: Time to visit all edges?

$$O(|V| + |E|)$$

$$O(|V|^2)$$

	0	1	2	3	4
0	F	F	F	F	F
1	F	F	T	T	F
2	F	F	F	F	Т
3	F	F	Т	F	Т
4	F	F	F	F	F

Efficiency: Time to determine whether edge from v_1 to v_2 exists?

$$O(|V| + |E|)$$
Tighter: $O(|V| + \# \text{ odges logwing } v)$

Tighter: $O(|V| + \# \text{ edges leaving } v_1)$

More graph terminology

- \square Vertices u and v are called
 - \blacksquare the source and sink of the directed edge (u, v), respectively
 - \blacksquare the **endpoints** of (u, v) or $\{u, v\}$
- $\ \square$ The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- \Box The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- $\ \square$ The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

Efficiency: Time to determine whether edge from v_1 to v_2 exists?

$$O(|V| + |E|)$$

Tighter: $O(|V| + outdegree(v_1))$

List	Property	Matrix
O(V + E)	Space	O(V ²)
O(V + E)	Time to visit all edges	O(V ²)
$O(V + od(v_1))$	Time to find edge (v_1, v_2)	O(1)

List	Property	Matrix
O(V + E)	Space	$O(V ^2)$
O(V + E)	Time to visit all edges	$O(V ^2)$
$O(V + od(v_1))$	Time to find edge (v_1, v_2)	O(1)

Max # edges

List	Property	Matrix
O(V + E)	Space	$O(V ^2)$
O(V + E)	Time to visit all edges	$O(V ^2)$
$O(V + od(v_1))$	Time to find edge (v_1, v_2)	O(1)

Max # edges

 $= |V|^2$

Sparse: $|E| \ll |V|^2$

Dense: $|E| \approx |V|^2$

List	Property	Matrix
O(V + E)	Space	O(V ²)
O(V + E)	Time to visit all edges	O(V ²)
$O(V + od(v_1))$	Time to find edge (v_1, v_2)	O(1)
Sparse graphs	Better for	Dense graphs

Sparse: $|E| \ll |V|^2$

