Chart (aka graphs)	Graphs

Vertices: people “from”
Edges: friendships

https://medium.com/@johnrobb/facebook-the-complete-social-graph-b58157ee6594

Vertices: subway stops
Edges: railways
Graphs as mathematical structures

Undirected graphs

An undirected graph is a pair \((V, E)\) where
- \(V\) is a set
 - Element of \(V\) is called a vertex or node
 - We’ll consider only finite graphs
 - Ex: \(V = \{A, B, C, D, E\}; |V| = 5\)
- \(E\) is a set
 - Element of \(E\) is called an edge or arc
 - An edge is itself a two-element set \(\{u, v\} \subseteq V\)
 - Often require \(u \neq v\) (i.e., no self-loops)
 - Ex: \(E = \{(A, B), (A, C), (B, C), (C, D)\}; |E| = 4\)

Directed graphs

A directed graph is similar except the edges are pairs \((u, v)\), hence order matters

\[V = \{A, B, C, D, E\} \]
\[E = \{(A, C), (B, A), (B, C), (C, D), (D, C)\} \]
\[|V| = 5 \]
\[|E| = 5 \]

Convert undirected \(\leftrightarrow\) directed?

- Right question is: convert and maintain which properties of graph?
- Convert undirected to directed and maintain paths?
Paths

- A path is a sequence $v_0, v_1, v_2, ..., v_p$ of vertices such that for $0 \leq i < p$,
 - Directed: $(v_i, v_{i+1}) \in E$
 - Undirected: $\{v_i, v_{i+1}\} \in E$
- The length of a path is its number of edges

Convert undirected \leftrightarrow directed?

- Right question is: convert and maintain which properties of graph?
- Convert undirected to directed and maintain paths:
 - Nodes unchanged
 - Replace each edge $\{u, v\}$ with two edges $(u, v), (v, u)$
- Convert directed to undirected and maintain paths: Can’t:

Labels

- Whether directed or undirected, edges and vertices can be labeled with additional data

Discuss

- How could you represent a maze as a graph?

Announcement

- **A4**: See time distribution and comments @735
 - Spending >16 hours is a problem; talk to us or a TA about why that might be happening
 - Comments on the GUI:
 - “GUI was pretty awesome.”
 - “I didn’t see the relevance of the GUI.”
 - Hints:
 - “Hints were extremely useful and I would’ve been lost without them.”
 - “Hints are too helpful. You should leave more for people to figure out on their own.”
 - Adjectives:
 - “Fun” (x30), “Cool” (x19)
 - “Whack”, “Stressful”, “Tedious”, “Rough”

Graphs as data structures
Graph ADT

Operations could include:
- Add a vertex
- Remove a vertex
- Search for a vertex
- Number of vertices
- Add an edge
- Remove an edge
- Search for an edge
- Number of edges

Graph representations

- Two vertices are adjacent if they are connected by an edge
- Common graph representations:
 - Adjacency list
 - Adjacency matrix

Running example (directed, no edge labels)

Adjacency “list”

- Maintain a collection of the vertices
- For each vertex, also maintain a collection of its adjacent vertices

Vertices: 1, 2, 3, 4

Adjacencies:
- 1: 2, 3
- 2: 4
- 3: 2, 4
- 4: none

Could implement these “lists” in many ways...

Adjacency list implementation #1

Map from vertex label to sets of vertex labels

1 => {2, 3}
2 => {4}
3 => {2, 4}
4 => {none}

Adjacency list implementation #2

Linked list, where each node contains vertex label and linked list of adjacent vertex labels

Adjacency list implementation #3

Array, where each element contains linked list of adjacent vertex labels

Requires: labels are integers; dealing with bounded number of vertices
Adjacency “matrix”

- Given integer labels and bounded # of vertices...
- Maintain a 2D Boolean array \(b \)
- Invariant: element \(b[i][j] \) is true iff there is an edge from vertex \(i \) to vertex \(j \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Adjacency list vs. Adjacency matrix

Efficiency: Space to store?

\(O(|V| + |E|) \) \(O(|V|^2) \)

Adjacency list vs. Adjacency matrix

Efficiency: Time to visit all edges?

\(O(|V| + |E|) \) \(O(|V|^2) \)

More graph terminology

- Vertices \(u \) and \(v \) are called
- the source and sink of the directed edge \((u, v)\), respectively
- the endpoints of \((u, v)\) or \{\(u, v\}\)
- The outdegree of a vertex \(u \) in a directed graph is the number of edges for which \(u \) is the source
- The indegree of a vertex \(v \) in a directed graph is the number of edges for which \(v \) is the sink
- The degree of a vertex \(u \) in an undirected graph is the number of edges of which \(u \) is an endpoint

Efficiency: Time to determine whether edge from \(v_1 \) to \(v_2 \) exists?

\(O(|V| + |E|) \) \(O(1) \)

Tighter: \(O(|V| + \text{outdegree}(v_1)) \)
Adjacency list vs. Adjacency matrix

<table>
<thead>
<tr>
<th>List</th>
<th>Property</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>(O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>(O(</td>
<td>V</td>
<td>+ od(v_i)))</td>
</tr>
</tbody>
</table>

Sparse graphs Better for **Dense graphs**

- Sparse: \(|E| \ll |V|^2\)
- Dense: \(|E| \approx |V|^2\)

Max # edges = \(|V|^2\)