Announcements

Submit P1 Conflict quiz on CMS by end of day Wednesday. We won’t be sending confirmations; no news is good news. Extra time people will eventually get an email from Lacy. Please be patient.

Today’s Topics in JavaHyperText

- Search for "trees"
- Read PDFs for points 0 through 5: intro to trees, examples of trees, binary trees, binary search trees, balanced trees

Data Structures

- **Data structure**
 - Organization or format for storing or managing data
 - Concrete realization of an abstract data type
- **Operations**
 - Always a tradeoff: some operations more efficient, some less, for any data structure
 - Choose efficient data structure for operations of concern

Example Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add(v)</th>
<th>get(i)</th>
<th>contains(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Linked List</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

Add(v): append v
Get(i): return element at position i
Contains(v): return true if contains v

Tree

Singly linked list:

Node
- 2
 - Node
 - Int value
 - Pointer

Today: trees!
In CS, we draw trees “upside down”

Tree Overview

- Tree: data structure with nodes, similar to linked list
 - Each node may have zero or more successors (children)
 - Each node has exactly one predecessor (parent) except the root, which has none
 - All nodes are reachable from root

A tree or not a tree?

Tree Terminology (1)

- the root of the tree (no parents)
- child of M
- the leaves of the tree (no children)

Tree Terminology (2)

- ancestors of B
- descendants of W

Tree Terminology (3)

- subtree of M

Tree Terminology (4)

- A node’s depth is the length of the path to the root.
- A tree’s (or subtree’s) height is the length of the longest path from the root to a leaf.
Tree Terminology (5)

Multiple trees: a forest

General vs. Binary Trees

General tree: every node can have an arbitrary number of children

Binary tree: at most two children, called left and right

...often "tree" means binary tree

General tree

Binary tree

Demo

Binary trees were in A1!

You have seen a binary tree in A1.
A PhD object has one or two advisors.
(Note: the advisors are the "children".)

David Gries
Friedrich Bauer
Fritz Bopp
Georg Aumann
Fritz Sauter
Enwin Fues
Heinrich Tietze
Constantin Carathéodory

Special kinds of binary trees

Max # of nodes at depth d: 2^d

If height of tree is h:
- min # of nodes: $h + 1$
- max # of nodes: (Perfect tree) $2^0 + \ldots + 2^h = 2^{h+1} - 1$

Complete binary tree

Every level, except last, is completely filled, nodes on bottom level as far left as possible. No holes.

Trees are recursive

A binary tree

left subtree

right subtree

value
A binary tree is either `null` or an object consisting of a value, a left binary tree, and a right binary tree.

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

Comparing Searches

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add(val v)</th>
<th>get(idx i)</th>
<th>contains(val v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Linked List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Binary Tree</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Node could be anywhere in tree

Binary search on arrays: $O(\log n)$

Requires invariant: array sorted

...analogue for trees?
A binary search tree is a binary tree with a **class invariant**:
- All nodes in the **left** subtree have values that are **less** than the value in that node, and
- All values in the **right** subtree are **greater**.
 (assume no duplicates)

Binary Search Tree (BST)

- Binary tree: two recursive calls: $O(n)$
- BST: one recursive call: $O(\text{height})$

BST Insert

To insert a value:
- Search for value
- If not found, put in tree where search ends

Example: Insert month names in chronological order as Strings, (Jan, Feb...). BST orders Strings alphabetically (Feb comes before Jan, etc.)

BST Insert

- insert: January

BST Insert

- insert: February

BST Insert

- insert: March
Comparing Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add (val x)</th>
<th>get (int i)</th>
<th>contains (val x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Linked List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Binary Tree</td>
<td></td>
<td>$O(n)$</td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>$O(\text{height})$</td>
<td>$O(\text{height})$</td>
<td></td>
</tr>
</tbody>
</table>

How big could height be?

Worst case height

Insert in alphabetical order...

Tree degenerates to list!
Need Balance

- Takeaway: BST search is $O(n)$ time
 - Recall, big O notation is for worst case running time
 - Worst case for BST is data inserted in sorted order

- Balanced binary tree: subtrees of any node are about the same height
 - In balanced BST, search is $O(\log n)$
 - Deletion: tricky! Have to maintain balance
 - [Optional] See JavaHyperText “Extensions to BSTs”
 - Also see CS 3110