“Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better.”

- Edsger Dijkstra
Announcements

- Next Mon-Tues: Spring Break
- No recitation next week
- Regrade requests will be processed this weekend
- Prelim is on Tuesday, 12 March. Prelim Review for prelim Sunday, 10 March, 1-3PM

Next Thursday, we will tell you
- What time you will be assigned to take it
- What to do if you can’t take it then but can take the other one
- What to do if you can’t take it that evening.
- What to do if authorized for more time or quiet space
Help in providing code coverage

White-box testing: make sure each part of program is “exercised” in at least one test case. Called code coverage.

Eclipse has a tool for showing you how good your code coverage is! Use it on A3 (and any programs you write)

JavaHyperText entry:

 code coverage

We demo it.
What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?
- Faster?
- Less space?
- Simpler?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?
Constant time operation: its time doesn’t depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:
- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)
// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k+1) {
 sum = sum + k;
}

All basic steps take time 1. There are n loop iterations. Therefore, takes time proportional to n.

Statement:
\[
\begin{align*}
\text{sum} &= 0; \\
\text{k} &= 1; \\
\text{k} &\leq n \\
\text{k} &= \text{k}+1; \\
\text{sum} &= \text{sum} + \text{k}; \\
\end{align*}
\]

times done
1
1
n+1
n
3n + 3

Linear algorithm in n
// Store n copies of ‘c’ in s
s = "";

// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1){
 s = s + 'c';
}

Catenation is not a basic step. For each k, catenation creates and fills k array elements.

Statement: # times done
s = ""; 1
k = 1; 1
k <= n n+1
k = k+1; n
s = s + 'c'; n

Total steps: 3n + 3
s = s + “c”; is NOT constant time.
It takes time proportional to 1 + length of s
Basic steps executed in s= s + ‘c’;

s= s + 'c'; // Suppose length of s is k

1. Create new String object, say C basic steps.
2. Copy k chars from object s to the new object: k basic steps
3. Place char ‘c’ into the new object: 1 basic step.
4. Store pointer to new object into s: 1 basic step.
Total of (C+2) + k basic steps.

In the algorithm, s= s + ‘c’; is executed n times:
s= s + ‘c’; with length of s = 0
s= s + ‘c’; with length of s = 1
...
s= s + ‘c’; with length of s = n-1
Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps
Basic steps executed in \(s = s + 'c'; \)

\[
s = s + 'c'; \quad \text{// Suppose length of } s \text{ is } k
\]

In the algorithm, \(s = s + 'c'; \) is executed as follows:

\[
s = s + 'c'; \quad \text{with length of } s = 0
\]

\[
s = s + 'c'; \quad \text{with length of } s = 1
\]

\[
\vdots
\]

\[
s = s + 'c'; \quad \text{with length of } s = n-1
\]

Total of \(n^*(C+2) + (0 + 1 + 2 + \ldots + n-1) \) basic steps

\[
0 + 1 + 2 + \ldots + n-1 = \frac{n(n-1)}{2}. \quad \text{Gauss figured this out in the 1700’s}
\]

\[
= \frac{n^2}{2} - \frac{n}{2}.
\]

mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html
Basic steps executed in s = s + ‘c’;

s = s + 'c'; // Suppose length of s is k

In the algorithm, s = s + ‘c’; is executed as follows:
- s = s + ‘c’; with length of s = 0
- s = s + ‘c’; with length of s = 1
 ...
- s = s + ‘c’; with length of s = n-1

Total of \(n \times (C + 2) + (0 + 1 + 2 + \ldots + n-1)\) basic steps

Total of \(n \times (C + 2) + \frac{n^2}{2} - \frac{n}{2}\) basic steps

Total of \(n \times (C + 2) + \frac{n^2}{2} - \frac{n}{2}\) basic steps. Quadratic in n.
Not all operations are basic steps

// Store n copies of ‘c’ in s
s = "";
// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1) {
 s = s + 'c';
}

Total steps:
2n + 3 + n*(C+2) + n^2/2 – n/2
for s = s + ‘c’;

Statement: # times # steps
s = ""; 1 1
k = 1; 1 1
k <= n n+1 1
k = k+1; n 1
s = s + 'c'; see to left

Total steps: …

Quadratic algorithm in n
Linear versus quadratic

// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k + 1)
 sum = sum + n

Lineal algorithm

// Store n copies of ‘c’ in s
s = ""
// inv: s contains k-1 copies of ‘c’
for (int k = 1; k = n; k = k + 1)
 s = s + ‘c’;

Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What’s important is that

One is linear in n — takes time proportional to n
One is quadratic in n — takes time proportional to n^2
Looking at execution speed

Number of operations executed

2n+2, n+2, n are all linear in n, proportional to n

2n + 2 ops
n + 2 ops
n ops

Constant time

size n of the array

0 1 2 3 …
What do we want from a definition of “runtime complexity”?

1. Distinguish among cases for large n, not small n
2. Distinguish among important cases, like
 - $n \times n$ basic operations
 - n basic operations
 - $\log n$ basic operations
 - 5 basic operations
3. Don’t distinguish among trivially different cases.
 - 5 or 50 operations
 - n, $n+2$, or $4n$ operations
Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $N \geq 0$ such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

Intuitively, $f(n)$ is $O(g(n))$ means that $f(n)$ grows like $g(n)$ or slower.

Get out far enough (for $n \geq N$)

$f(n)$ is at most $c \cdot g(n)$
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

Methodology:

Start with \(f(n)\) and slowly transform into \(c \cdot g(n)\):

- Use \(=\) and \(\leq\) and \(<\) steps
- At appropriate point, can choose \(N\) to help calculation
- At appropriate point, can choose \(c\) to help calculation
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

\[
\begin{align*}
f(n) &= \text{<definition of } f(n)> \\
&= 2n^2 + n \\
&\leq \text{<for } n \geq 1, \ n \leq n^2> \\
&= 2n^2 + n^2 \\
&= \text{<arith>} \\
&= 3n^2 \\
&= \text{<definition of } g(n) = n^2> \\
&= 3g(n)
\end{align*}
\]

Transform \(f(n)\) into \(c \cdot g(n)\):

- Use =, <= , < steps
- Choose \(N\) to help calc.
- Choose \(c\) to help calc

Choose \(N = 1\) and \(c = 3\)
Prove that \(100n + \log n\) is \(O(n)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

\[
f(n) = \quad \text{<put in what } f(n) \text{ is>}
\]
\[
100n + \log n
\]
\[
\leq \quad \text{<We know } \log n \leq n \text{ for } n \geq 1>
\]
\[
100n + n
\]
\[
= \quad \text{<arith>}
\]
\[
101n
\]
\[
= \quad \text{<g(n) = n>}
\]
\[
101g(n)
\]

Choose \(N = 1\) and \(c = 101\)

O(…) Examples

Let \(f(n) = 3n^2 + 6n - 7 \)
- \(f(n) \) is \(O(n^2) \)
- \(f(n) \) is \(O(n^3) \)
- \(f(n) \) is \(O(n^4) \)
- …

\(p(n) = 4n \log n + 34n - 89 \)
- \(p(n) \) is \(O(n \log n) \)
- \(p(n) \) is \(O(n^2) \)

\(h(n) = 20 \cdot 2^n + 40n \)
- \(h(n) \) is \(O(2^n) \)

\(a(n) = 34 \)
- \(a(n) \) is \(O(1) \)

Only the leading term (the term that grows most rapidly) matters

If it’s \(O(n^2) \), it’s also \(O(n^3) \) etc! However, we always use the smallest one
Do NOT say or write \(f(n) = O(g(n)) \)

Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

\(f(n) = O(g(n)) \) is simply **WRONG**. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use \(= \) this way.

We know that \(n+2 \) is \(O(n) \) and \(n+3 \) is \(O(n) \). Suppose we use \(= \)

\[
\begin{align*}
n+2 &= O(n) \\
n+3 &= O(n)
\end{align*}
\]

But then, by transitivity of equality, we have \(n+2 = n+3 \). We have proved something that is false. Not good.
- Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th>operations</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>n log n</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>3n^2</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>Time Bound</th>
<th>Complexity</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$n \log n$</td>
<td>pretty good</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>
Search for \(v \) in \(b[0..] \)

Q: \(v \) is in array \(b \)
Store in \(i \) the index of the first occurrence of \(v \) in \(b \):
R: \(v \) is not in \(b[0..i-1] \) and \(b[i] = v \).

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
Search for v in b[0..]

Q: v is in array b

Store in i the index of the first occurrence of v in b:

R: v is not in b[0..i-1] and b[i] = v.

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
The Four Loopy Questions

- Does it start right?
 \[\{Q\} \text{ init } \{P\} \text{ true?} \]

- Does it continue right?
 \[\{P \land B\} \text{ S } \{P\} \text{ true?} \]

- Does it end right?
 \[P \land !B \implies R \text{ true?} \]

- Will it get to the end?
 Does it make progress toward termination?
Search for v in b[0..]

Q: v is in array b

Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.

Each iteration takes constant time.

Worst case: b.length iterations
Binary search for \(v \) in sorted \(b[0..] \)

// \(b \) is sorted. Store in \(i \) a value to truthify \(R \):
// \(b[0..i] \leq v < b[i+1..] \)

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
Binary search for \(v \) in sorted \(b[0..] \)

// \(b \) is sorted. Store in \(i \) a value to truthify \(R \):
// \(b[0..i] \leq v < b[i+1..] \)

\[
\begin{array}{l}
\text{pre: } b \quad \text{sorted} \\
\text{post: } b \quad \leq v \quad > v \\
\text{inv: } b \quad \leq v \quad ? \quad > v \\
\end{array}
\]

\[
\begin{array}{cccccc}
0 & i & e & k & \text{b.length} \\
\leq v & \leq v & > v
\end{array}
\]

\[
i= -1; \\
k= \text{b.length}; \\
\text{while } (i+1 < k) \{ \\
\quad \text{int } e=(i+k)/2; \\
\quad \text{// } -1 \leq i < e < k \leq \text{b.length} \\
\quad \text{if } (b[e] \leq v) \ i= e; \\
\quad \text{else } k= e; \\
\}
\]
Binary search for \(v \) in sorted \(b[0..] \)

\[
\text{// } b \text{ is sorted. Store in } i \text{ a value to truthify } R:\n\text{// } b[0..i] \leq v < b[i+1..]
\]

```java
0                      \quad \text{b.length}
pre: \quad b \quad \text{sorted}
0 \quad i \quad \text{b.length}
post: \quad b \quad \leq v \quad > v
0 \quad i \quad k \quad \text{b.length}
inv: \quad b \quad \leq v \quad ? \quad > v
```

\[
i = -1; \\
k = \text{b.length}; \\
\text{while } (i + 1 < k) \{ \\
\quad \text{int } e = (i + k) / 2; \\
\quad // -1 \leq e < k \leq \text{b.length} \\
\quad \text{if } (b[e] \leq v) \quad i = e; \\
\quad \text{else } k = e; \\
\}
\]

Each iteration takes constant time.

\text{Logarithmic: } O(\log(\text{b.length})) \quad \text{Worst case:} \quad \text{log(\text{b.length}) iterations}
Binary search for v in sorted b[0..]

// b is sorted. Store in i a value to truthify R:
// b[0..i] <= v < b[i+1..]

This algorithm is better than binary searches that stop when v is found.
1. Gives good info when v not in b.
2. Works when b is empty.
3. Finds first occurrence of v, not arbitrary one.
4. Correctness, including making progress, easily seen using invariant

i= -1;
k= b.length;
while (i+1<k) {
 int e=(i+k)/2;
 // -1 <= e < k <= b.length
 if (b[e] <= v) i= e;
 else k= e;
}

Each iteration takes constant time.

Logarithmic: O(log(b.length))

Worst case:
log(b.length) iterations
Dutch National Flag Algorithm
Dutch national flag. Swap b[0..n-1] to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of b[0..n-1] to truthify postcondition R:

Q: b

<table>
<thead>
<tr>
<th>0</th>
<th>?</th>
</tr>
</thead>
</table>

R: b

<table>
<thead>
<tr>
<th>reds</th>
<th>whites</th>
<th>blues</th>
</tr>
</thead>
</table>

P1: b

<table>
<thead>
<tr>
<th>reds</th>
<th>whites</th>
<th>blues</th>
<th>?</th>
</tr>
</thead>
</table>

P2: b

<table>
<thead>
<tr>
<th>reds</th>
<th>whites</th>
<th>?</th>
<th>blues</th>
</tr>
</thead>
</table>

Suppose we use invariant P1.

What does the repetend do?

2 swaps to get a red in place
Dutch National Flag Algorithm

Dutch national flag. Swap $b[0..n-1]$ to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of $b[0..n-1]$ to truthify postcondition R:

- Q: b reds, whites, blues
- R: b reds, whites, blues

Suppose we use invariant $P2$.

What does the repetend do?

At most one swap per iteration

Compare algorithms without writing code!
Dutch National Flag Algorithm: invariant P1

Q: b

R: b

P1: b

$0 \quad h \quad k \quad p \quad n$

$0 \quad ? \quad ? \quad ? \quad n$

$h = 0; k = h; p = k;$

while ($p \neq n$) {

if ($b[p]$ blue) $p = p + 1$;

else if ($b[p]$ white) {

swap $b[p], b[k]$;

$p = p + 1; k = k + 1$;

}

else { // $b[p]$ red

swap $b[p], b[h]$;

swap $b[p], b[k]$;

$p = p + 1; h = h + 1; k = k + 1$;

}

}
Dutch National Flag Algorithm: invariant P2

h = 0; k = h; p = n;
while (k != p) {
 if (b[k] white) k = k+1;
 else if (b[k] blue) {
 p = p-1;
 swap b[k], b[p];
 }
 else { // b[k] is red
 swap b[k], b[h];
 h = h+1; k = k+1;
 }
}
Asymptotically, which algorithm is faster?

<table>
<thead>
<tr>
<th>Invariant 1</th>
<th>Invariant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h k p n</td>
<td>0 h k p n</td>
</tr>
<tr>
<td>reds</td>
<td>whites</td>
</tr>
</tbody>
</table>

h= 0; k= h; p= k;
while (p != n) {

 if (b[p] blue) p= p+1;
 else if (b[p] white) {
 swap b[p], b[k];
 p= p+1; k= k+1;
 }

 else { // b[p] red
 swap b[p], b[h];
 swap b[p], b[k];
 p= p+1; h= h+1; k= k+1;
 }
}

h= 0; k= h; p= n;
while (k != p) {

 if (b[k] white) k= k+1;
 else if (b[k] blue) {
 p= p-1;
 swap b[k], b[p];
 }

 else { // b[k] is red
 swap b[k], b[h];
 h= h+1; k= k+1;
 }
}
Asymptotically, which algorithm is faster?

Invariant 1

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td>whites</td>
<td>blues</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

might use 2 swaps per iteration

```
if (b[p] blue)      p = p+1;
else if (b[p] white) {
    swap b[p], b[k];
    p = p+1; k = k+1;
}
```

swap b[p], b[h];
swap b[p], b[k];
p = p+1; h = h+1; k = k+1;

Invariant 2

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td>whites</td>
<td>?</td>
<td>blues</td>
<td></td>
</tr>
</tbody>
</table>

uses at most 1 swap per iteration

```
if (b[k] white)      k = k+1;
else if (b[k] blue) {
    p = p-1;
}
```

```
swap b[k], b[p];
swap b[k], b[h];
h = h+1; k = k+1;
```

These two algorithms have the same asymptotic running time (both are $O(n)$)