Object-oriented programming and data-structures

CS/ENGRD 2110
SUMMER 2018

Lecture 14: Spanning Trees
http://courses.cs.cornell.edu/cs2110/2018su
Graph Algorithms

- Search
 - Depth-first search
 - Breadth-first search
- Shortest paths
 - Dijkstra's algorithm
- Spanning trees
 - Prim's algorithm
 - Kruskal's algorithm
Recall: Trees

- A undirected graph is a **tree** if there is exactly one **simple path** between any pair of vertices.
A undirected graph is a **tree** if there is exactly one **simple path** between any pair of vertices.

What’s the root? It doesn’t matter. Any vertex can be root
Facts about trees

- A tree must necessarily be:
 - Connected
 - A graph is connected when there is a path between every pair of vertices
 - \#E = \#V - 1
 - No cycles
Spanning Trees

- A spanning tree of a **connected** undirected graph \((V,E)\) is a subgraph \((V,E')\) that is a tree

 - Same set of vertices \(V\)
 - \(E' \subseteq E\)
 - \((V, E')\) is a tree

- Same set of vertices \(V\)
 - Maximal set of edges that contains no cycle

- Same set of vertices \(V\)
 - Minimal set of edges that connect all vertices

Three equivalent definitions
Applications of spanning trees

- Spanning trees represent the minimum set of edges such that all the nodes in the graph are connected.
- Useful for telecommunication applications!
 - How can I connect everyone in my business using the fewest cables?
- Useful for wiring on chips
 - How can I arrange my components such that they can all talk to each other with the fewest cables.
Finding a spanning tree (V1)

- Recall
 - Same set of vertices V
 - Maximal set of edges that contains no cycle

- Define an iterative algorithm that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.
Finding a spanning tree (V1)

- Recall
 - Same set of vertices V
 - Maximal set of edges that contains no cycle

- Define an iterative algorithm that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.

Start with the whole graph – it is connected
- While there is a cycle:
 - Pick an edge of a cycle and throw it out
 - the graph is still connected (why?)
Finding a spanning tree (V1)

- Recall
 - Same set of vertices V
 - Maximal set of edges that contains no cycle

- Define an iterative algorithm that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.

Start with the whole graph – it is connected
 - While there is a cycle:
 - Pick an edge of a cycle and throw it out
 - the graph is still connected (why?)
Finding a spanning tree (V1)

- Recall
 - Same set of vertices V
 - Maximal set of edges that contains no cycle

- Define an iterative algorithm that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.

 Start with the whole graph – it is connected
 - While there is a cycle:
 - Pick an edge of a cycle and throw it out
 - the graph is still connected (why?)
Finding a spanning tree (V1)

- **Recall**
 - Same set of vertices \(V \)
 - Maximal set of edges that contains no cycle

- **Define an iterative algorithm** that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.

Start with the whole graph – it is connected
- While there is a cycle:
 - Pick an edge of a cycle and throw it out
 - the graph is still connected (why?)

Could have removed a different edge. There can be multiple spanning trees!
Finding a spanning tree (V2)

- Recall
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

- Define a set A that maintains following invariant:
 - A is a subset of some spanning tree (nodes in A are connected)

- At each step, determine an edge (u,v) that can add to A without violating invariant
 - $A \cup \{(u,v)\}$ is also a subset of a spanning tree
 - Call this edge a **safe edge**
Finding a spanning tree (V2)

- **Recall**
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
 Find an edge (u,v) that is safe for A
 A = A U {(u,v)}
return A
Finding a spanning tree (V2)

- Recall
 - Same set of vertices \(V \)
 - Minimal set of edges that connect all vertices

\[
A = \emptyset
// \text{ Inv: } A \text{ is a subset of a spanning tree } T
\]

While \(A \) does not form a spanning tree
 - Find an edge \((u,v)\) that is safe for \(A \)
 - \(A = A \cup \{(u,v)\} \)

return \(A \)

But how to determine what a **safe edge** is? (One must exist by our loop invariant: \(A \) is a subset of a spanning tree \(T \))
Definition: Cuts

- A cut \((S, V-S)\) of an undirected graph \(G = (V,E)\) is a partition of \(V\).

- We say that an edge \((u,v)\) crosses the cut \((S, V-S)\) if one of its endpoints is in \(S\) and the other is in \(V-S\).

- A cut respects a set \(A\) of edges if no edge in \(A\) crosses the cut.
Definition: Cuts

- A **cut** \((S,V-S)\) of an undirected graph \(G = (V,E)\) is a partition of \(V\).

- We say that an edge \((u,v) \in E\) **crosses** the cut \((S,V-S)\) if one of its endpoints is in \(S\) and the other is in \(V-S\).

- A cut **respects** a set \(A\) of edges if no edge in \(A\) crosses the cut.
Definition: Cuts

- A cut \((S, V-S)\) of an undirected graph \(G = (V, E)\) is a partition of \(V\).
- We say that an edge \((u,v)\) \(\in\) crosses the cut \((S, V-S)\) if one of its endpoints is in \(S\) and the other is in \(V-S\).
- A cut respects a set \(A\) of edges if no edge in \(A\) crosses the cut.

Blue edge crosses the cut as it connects a black node to a beige node.
Definition: Cuts

- A cut \((S, V-S)\) of an undirected graph \(G = (V,E)\) is a partition of \(V\).
- We say that an edge \((u,v) \in \text{crosses}\) the cut \((S, V-S)\) if one of its endpoints is in \(S\) and the other is in \(V-S\).
- A cut respects a set \(A\) of edges if no edge in \(A\) crosses the cut.

Diagram:
- Blue edge crosses the cut as it connects a black node to a beige node.
- Cut respects the set \(A\) of green edges.
Finding a spanning tree (V2)

- Recall
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
 Find an edge (u,v) that is safe for A
 A = A U {(u,v)}
return A

Let G = (V,E) be a connected, undirected graph. Let A be a subset of E that is included in some spanning tree for G. Let (S,V-S) be any cut of G that respects A, and let (u,v) be an edge crossing (S,V-S), then edge (u,v) is safe for A.
Finding a spanning tree (V2)

- Recall
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
 Find an edge (u,v) that is safe for A
 A = A U {(u,v)}
return A
Finding a spanning tree (V2)

- Recall
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

```
A = ∅  
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
  Find an edge (u,v) that is safe for A
  A = A U {(u,v)}
return A
```
Finding a spanning tree (V2)

- **Recall**
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

Let $A = \emptyset$

// Inv: A is a subset of a spanning tree T

While A does not form a spanning tree
 - Find an edge (u,v) that is safe for A
 - $A = A \cup \{(u,v)\}$

return A
Finding a spanning tree (V2)

- **Recall**
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
 Find an edge (u,v) that is safe for A
 A = A U {(u,v)}
return A
Finding a spanning tree (V2)

- **Recall**
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

A = ∅

// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
 Find an edge (u,v) that is safe for A
 $A = A \cup \{(u,v)\}$

return A
Finding a spanning tree (V2)

Recall
- Same set of vertices V
- Minimal set of edges that connect all vertices

$A = \emptyset$

// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
 Find an edge (u,v) that is safe for A
 $A = A \cup \{(u,v)\}$
return A
Finding a spanning tree (V2)

- Recall
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

```plaintext
A = ∅  
// Inv: A is a subset of a spanning tree $T$
While A does not form a spanning tree
    Find an edge $(u,v)$ that is safe for A
    A = A U {(u,v)}
return A
```
Finding a spanning tree (V2)

- **Recall**
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

\[
A = \emptyset
\]

// Inv: A is a subset of a spanning tree T

While A does not form a spanning tree
 Find an edge (u,v) that is safe for A
 \[
 A = A \cup \{(u,v)\}
 \]

return A
Finding a spanning tree (V2)

- Recall
 - Same set of vertices V
 - Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
 Find an edge (u,v) that is safe for A
 A = A U {(u,v)}
return A
Minimum Spanning Tree

- In a **weighted** graph, want to find the **minimum spanning tree**
 - (Recall that there can be multiple spanning trees)

- Want to find the spanning tree with the **minimum weight**

- Formally: finding the minimum spanning tree for a graph is finding the spanning tree whose weight **$w(T)$ is minimised**.

\[
w(T) = \sum_{(u,v) \in T} w(u, v)
\]
Definition: Cuts

- A cut $(S, V-S)$ of an undirected graph $G = (V,E)$ is a partition of V.
- We say that an edge $(u,v) \in E$ crosses the cut $(S, V-S)$ if one of its endpoints is in S and the other is in $V-S$.
- A cut respects a set A of edges if no edge in A crosses the cut.
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.
Algorithms of Kruskal and Prim

- **Greedy** algorithms that use a specific rule to determine a **safe edge**

- **Kruskal’s algorithm**
 - The **set A is a forest** whose vertices are all those of the given graph
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components

- **Prim’s algorithm**
 - The **set A forms a single tree**.
 - The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree
Kruskal’s Algorithm

- **Kruskal’s algorithm**
 - The *set A is a forest* whose vertices are all those of the given graph.
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- Kruskal’s algorithm

 - The **set A is a forest** whose vertices are all those of the given graph
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- Kruskal’s algorithm

- The set A is a forest whose vertices are all those of the given graph

- The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- **Kruskal’s algorithm**

 - The **set A is a forest** whose vertices are all those of the given graph

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- Kruskal’s algorithm

 - The set A is a forest whose vertices are all those of the given graph
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- Kruskal’s algorithm

 - The set A is a forest whose vertices are all those of the given graph

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- **Kruskal’s algorithm**

 - The **set A is a forest** whose vertices are all those of the given graph

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- **Kruskal’s algorithm**
 - The **set A is a forest** whose vertices are all those of the given graph.
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**
 - The set **A is a forest** whose vertices are all those of the given graph.
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**
 - The set **A is a forest** whose vertices are all those of the given graph.
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**
 - The set A is a forest whose vertices are all those of the given graph.
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**
 - The set A is a *forest* whose vertices are all those of the given graph.
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**

 - The **set A is a forest** whose vertices are all those of the given graph.

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**

 - The **set A is a forest** whose vertices are all those of the given graph

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- Kruskal’s algorithm

 - The **set A is a forest** whose vertices are all those of the given graph

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- **Kruskal’s algorithm**

 - The set **A is a forest** whose vertices are all those of the given graph.

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**
 - The set A is a forest whose vertices are all those of the given graph
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- **Kruskal’s algorithm**

 - The set A is a forest whose vertices are all those of the given graph.

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**
 - The **set A is a forest** whose vertices are all those of the given graph.
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- Kruskal’s algorithm

- The set A is a forest whose vertices are all those of the given graph

- The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- **Kruskal’s algorithm**

 - The set A is a forest whose vertices are all those of the given graph.

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**
 - The **set A is a forest** whose vertices are all those of the given graph.
 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Kruskal’s Algorithm

- **Kruskal’s algorithm**

 - The **set A is a forest** whose vertices are all those of the given graph

 - The same edge added to A is always a least-weight edge in the graph that connects two distinct components
Kruskal’s Algorithm

- Kruskal’s algorithm

- The set A is a forest whose vertices are all those of the given graph.

- The same edge added to A is always a least-weight edge in the graph that connects two distinct components.
Disjoint-Set Datastructures

- An easy way to express Kruskal’s algorithm is in terms of **disjoint-set data structure**

- A **disjoint set data structure** maintains a collection $S = \{S_1, S_2, ..., S_3\}$ of disjoint sets

- Each set is identified by a **representative**, which is some member in the set
 - Some applications care which member we choose, others don’t.

- Disjoint set data structures define three operations
 - Make-Set(x)
 - Union(x,y)
 - Find-Set(x)
Disjoint-Set Datastructures

Disjoint set data structures define three operations

- **Make-Set(x)**
 - Creates a new set whose only member (and thus representative) is x. Since the sets are disjoint, we require that x not already be in some other set.

- **Union(x, y)**
 - Merges the sets that contain x and y (S_x and S_y) into a new set that is the union of these two sets. The new representative of this set is either the representative of x, or of y.

- **Find-Set(x)**
 - Returns a reference to the representative of the (unique) set containing x.
Kruskal’s Algorithm

A = ∅

For each vertex v in G.V:
 Make-Set(v)

// Inv: A is a subset of the minimum spanning tree

Sort the edges of G.E into increasing order by weight w

For each edge (u,v) in G.E, taken in increasing order by weight w:
 If FIND-SET(u) ≠ FIND-SET(v)
 A = A U{(u,v)}
 UNION(u,v)

Return A
Kruskal’s Algorithm

\[A = \emptyset \]

For each vertex \(v \) in \(G.V \):
 Make-Set(\(v \))

 // Inv: \(A \) is a subset of the minimum spanning tree

Sort the edges of \(G.E \) into increasing order by weight \(w \)

For each edge \((u,v)\) in \(G.E \), taken in increasing order by weight \(w \):
 If FIND-SET(\(u \)) \(\neq \) FIND-SET(\(v \))
 \[A = A \cup \{(u,v)\} \]
 UNION(\(u,v \))

Return \(A \)

Initialises set \(A \) to the empty set and creates |\(V \)| trees, one containing each vertex
Kruskal’s Algorithm

\[A = \emptyset \]

For each vertex \(v \) in \(G.V \):

- Make-Set(\(v \))

// Inv: \(A \) is a subset of the minimum spanning tree

Sort the edges of \(G.E \) into increasing order by weight \(w \)

For each edge \((u,v)\) in \(G.E \), taken in increasing order by weight \(w \):

- If \(\text{FIND-SET}(u) \neq \text{FIND-SET}(v) \)
 - \(A = A \cup \{(u,v)\} \)
 - UNION(\(u,v \))

Return \(A \)

Initialises set \(A \) to the empty set and creates \(|V|\) trees, one containing each vertex.

Checks, for each edge \((u,)\) whether the endpoints \(u \) and \(v \) belong to the same tree already. If they do, then the edge \((u,v)\) cannot be added to the forest without creating a cycle, and the edge is discarded. Otherwise, the two vertices belong to different trees.

In this case, adds edge into \((u,v)\).
A = ∅

For each vertex v in G.V:
 Make-Set(v)

// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:
 If FIND-SET(u) ≠ FIND-SET(v)
 A = A U{(u,v)}
 UNION(u,v)

Return A
A = ∅

For each vertex v in G.V:
 Make-Set(v)
// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:
 If FIND-SET(u) ≠ FIND-SET(v)
 A = A U{(u,v)}
 UNION(u,v)
Return A

|V| * Make-Set (V)
Kruskal’s Algorithm - Complexity

A = ∅

For each vertex v in G.V:
 Make-Set(v)
// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:
 If FIND-SET(u) ≠ FIND-SET(v)
 A = A U{(u,v)}
 UNION(u,v)
Return A
Kruskal’s Algorithm - Complexity

\[A = \emptyset \]

For each vertex \(v \) in \(G.V \):
\[
\text{Make-Set}(v)
\]

// Inv: \(A \) is a subset of the minimum spanning tree

Sort the edges of \(G.E \) into increasing order by weight \(w \)

For each edge \((u,v) \) in \(G.E \), taken in increasing order by weight \(w \):
\[
\text{If FIND-SET}(u) \neq \text{FIND-SET}(v)
\]
\[
A = A \cup \{(u,v)\}
\]
\[
\text{UNION}(u,v)
\]

Return \(A \)

\[|V| \times \text{Make-Set} (V) \]

\[O(E \times \log E) \]

\[|E| \times (\text{Find-Set} + \text{Union}) \]
Kruskal’s Algorithm - Complexity

\(A = \emptyset \)

For each vertex \(v \) in \(G.V \):

\[\text{Make-Set}(v) \]

// Inv: \(A \) is a subset of the minimum spanning tree

Sort the edges of \(G.E \) into increasing order by weight \(w \)

For each edge \((u,v) \) in \(G.E \), taken in increasing order by weight \(w \):

\[\text{If} \ \text{FIND-SET}(u) \neq \text{FIND-SET}(v) \]

\[A = A \cup \{(u,v)\} \]

\[\text{UNION}(u,v) \]

Return \(A \)

\(|V| \times \text{Make-Set (V)}\)

\(|E| \times (\text{Find-Set} + \text{Union})\)

With the right disjoint-set datastructure, end up with \(O(E \log V) \)
Prim’s algorithm

- **The set A forms a single tree**
- The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree
- Algorithm starts from an arbitrary root vertex r and grows until tree spans all vertices in V
- Each step adds to the tree A a **light edge** that connects A to an isolated vertex (one on which no edge of A is incident)
Prim’s algorithm

- All vertices that are not in the tree reside in a min-priority queue Q based on a key attribute $v.key$
 - $v.key$ is the minimum weight of an edge connecting v to a vertex in A
 - $v.key = \infty$ if there is no such edge

- Attribute $v.\pi$ names the parent of v in the tree.
 - $v.\pi = \text{null}$ if no such parent exists
Prim’s algorithm
Prim’s algorithm

Start with arbitrary root. Here a. Set a.key=0

Start with arbitrary root. Here a. Set a.key=0
Prim’s algorithm

Start with arbitrary root. Here a. Set a.key=0
Prim’s algorithm

Extract minimum of Q and add it to minimum spanning tree.
Prim’s algorithm

For each outgoing edge (a,v) of a:
If v is in Q and \(w(a,v) < v.\text{key} \)
Update \(v.\pi = a \)
\(v.\text{key} = w(u,v) \)
For each outgoing edge (a,v) of a:
If v is in Q and w(a,v) < v.key
Update v.π = a
v.key = w(u,v)
Prim’s algorithm

Extract minimum of Q and add it to minimum spanning tree.
Prim’s algorithm

For each outgoing edge \((a,v)\) of \(a\):
 If \(v\) is in \(Q\) and \(w(a,v) < v.key\)
 Update \(v.\pi = a\)
 \(v.key = w(u,v)\)
Extract minimum of Q and add it to minimum spanning tree.
Prim’s algorithm

For each outgoing edge \((a,v)\) of \(a\):
If \(v\) is in \(Q\) and \(w(a,v) < v.key\)
Update \(v.\pi = a\)
\(v.\text{key} = w(u,v)\)
Prim’s algorithm

For each outgoing edge \((a,v)\) of \(a\):
If \(v\) is in \(Q\) and \(w(a,v) < v\).key
Update \(v.\pi = a\)
\(v\).key = \(w(u,v)\)
Prim’s algorithm
Prim’s algorithm

- f (4, c)
- h (7, i)
- d (7, c)
- e (∞, nil)
- g (6, i)
Prim’s algorithm

f (4, c)
g (6, i)
h (7, i)
d (7, c)
e (∞, nil)
Prim’s algorithm

Graph with weighted edges:
- a to b: 4
- b to c: 8
- a to h: 11
- h to i: 7
- i to b: 2
- i to g: 6
- g to i: 1
- g to c: 2
- c to f: 4
- f to e: 14
- f to d: 9
- e to f: 10

Nodes:
- a
- b
- c
- d
- e
- f
- g
- h
- i

Weights:
- f(4,c)
- g(6,i)
- h(7,i)
- d(7,c)
- e(∞,nil)
Prim’s algorithm
Prim’s algorithm
Prim’s algorithm
Prim’s algorithm
Prim’s algorithm

The diagram shows a weighted graph with the following edges and weights:
- a to b: 4
- b to c: 8
- c to d: 7
- d to e: 9
- e to f: 10
- f to g: 2
- g to h: 1
- h to i: 7
- i to c: 2
- i to g: 6
- i to b: 11

The algorithm starts from node a and connects nodes while minimizing the total weight.
Prim’s algorithm
Prim’s algorithm
Prim’s algorithm
Prim’s algorithm
Prim’s algorithm

At each step of the algorithm, the vertices in the tree determine a cut of the graph, and a light edge crossing the cut is added to the tree.
Do Prim and Kruskal generate the same minimum spanning tree?
Prim’s algorithm

For each $u \in G.v$:
- $u.\text{key} = \infty$
- $u.\pi = \text{nil}$

$r.\text{key} = 0$

$Q = G.V$

while $Q \neq \emptyset$

- $u = \text{EXTRACT-MIN}(Q)$

for each edge (u,v):

- If $v \in Q$ and $w(u,v) < v.\text{key}$
 - $v.\pi = u$
 - $v.\text{key} = w(u,v)$
 - $\text{DECREASE-KEY}(Q,v,v.\text{key})$
For each $u \in G.v$:
- $u.key = \infty$
- $u.\pi = \text{nil}$

Let $r.key = 0$

$Q = G.V$

while $Q \neq \emptyset$
- $u = \text{EXTRACT-MIN}(Q)$
 - for each edge (u,v):
 - If $v \in Q$ and $w(u,v) < v.key$
 - $v.\pi = u$
 - $v.key = w(u,v)$
 - $\text{DECREASE-KEY}(Q,v,v.key)$

The vertices already placed into the minimum spanning tree are those in $V - Q$

For all vertices $v \in Q$, if $v.\pi$ is not null, then $v.key < \infty$ and $v.key$ is the weight of a light edge $(v,v.\pi)$ connecting v to some vertex already placed into the minimum spanning tree.
For each \(u \in G.v \):
 \[u.\text{key} = \infty \]
 \[u.\pi = \text{nil} \]
\[\text{r.key} = 0 \]
\[Q = G.V \]
while \(Q \neq \emptyset \)
 \[u = \text{EXTRACT-MIN}(Q) \]
 for each edge \((u,v) \):
 If \(v \in Q \) and \(w(u,v) < v.\text{key} \)
 \[v.\pi = u \]
 \[v.\text{key} = w(u,v) \]
 \[\text{DECREASE-KEY}(Q,v,v.\text{key}) \]
Prim’s algorithm - Complexity

For each \(u \in G.v: \)
\[
\begin{align*}
&u.\text{key} = \infty \\
&u.\pi = \text{nil}
\end{align*}
\]
\[r.\text{key} = 0\]
\[Q = G.V\]
\[\text{while } Q \neq \emptyset \]
\[
\begin{align*}
&u = \text{EXTRACT-MIN}(Q) \\
&\text{for each edge } (u,v): \\
&\quad \text{If } v \in Q \text{ and } w(u,v) < v.\text{key} \\
&\quad \quad v.\pi = u \\
&\quad \quad v.\text{key} = w(u,v) \\
&\quad \text{DECREASE-KEY}(Q,v,v.\text{key})
\end{align*}
\]

- \(|V| \ast \text{Insert}(Q,v)\)
- \(|V| \ast \text{Extract-Min}(Q)\)
- \(|E| \ast \text{Decrease-Key}(Q)\)
For each \(u \in G.v \):
- \(u.\text{key} = \infty \)
- \(u.\pi = \text{nil} \)
\(r.\text{key} = 0 \)
\(Q = G.V \)
while \(Q \neq \emptyset \):
- \(u = \text{EXTRACT-MIN}(Q) \)
 for each edge \((u,v)\):
 If \(v \in Q \) and \(w(u,v) < v.\text{key} \)
 - \(v.\pi = u \)
 - \(v.\text{key} = w(u,v) \)
 \(\text{DECREASE-KEY}(Q,v,v.\text{key}) \)

\(|V| \times \text{Insert}(Q,v)\)

\(|V| \times \text{Extract-Min}(Q)\)

\(|E| \times \text{Decrease-Key}(Q)\)

\(O(V\log V + E\log V)\) if use min-heap, \(O(V\log V + E)\) if use Fibonacci heaps
Taking a step back..

- **Greedy algorithm**: An algorithm that uses the heuristic of making the locally optimal choice at each stage with the hope of finding the global optimum.
Taking a step back..

- **Greedy algorithm**: An algorithm that uses the heuristic of making the locally optimal choice at each stage with the hope of finding the global optimum.

- Dijkstra’s shortest-path algorithm makes a locally optimal choice: choosing the node in Q with minimum d value and moving it to the A set.
 - We proved that this leads to the global optimum.
Taking a step back ..

- **Greedy algorithm**: An algorithm that uses the heuristic of making the locally optimal choice at each stage with the hope of finding the global optimum.

- Dijkstra’s shortest-path algorithm makes a locally optimal choice: choosing the node in Q with minimum d value and moving it to the A set.
 - We proved that this leads to the global optimum.

- Similarly, Prim’s and Kruskal’s locally optimum choices of adding a minimum-weight edge also yield the global optimum: a minimum spanning tree.
Taking a step back..

- **Greedy algorithm**: An algorithm that uses the heuristic of making the locally optimal choice at each stage with the hope of finding the global optimum.

- Dijkstra’s shortest-path algorithm makes a locally optimal choice: choosing the node in Q with minimum d value and moving it to the A set.
 - We proved that this leads to the global optimum.

- Similarly, Prim’s and Kruskal’s locally optimum choices of adding a minimum-weight edge also yield the global optimum: a minimum spanning tree.

- **BUT**: Greediness does not always work!
Taking a step back..

- Prim, BFS, DFS all share a similar code structure

- Breadth-first-search (bfs)
 - best: next in queue
 - update: \(D[w] = D[v] + 1 \)

- Dijkstra’s algorithm
 - best: next in priority queue
 - update: \(D[w] = \min(D[w], D[v] + c(v,w)) \)

- Prim’s algorithm
 - best: next in priority queue
 - update: \(D[w] = \min(D[w], c(v,w)) \)

```c
while (a vertex is unmarked) {
    v = best unmarked vertex
    mark v;
    for (each w adj to v)
        update D[w];
}
```