Object-oriented programming and data-structures

CS/ENGRD 2110
SUMMER 2018

Lecture 12: Graphs Search
http://courses.cs.cornell.edu/cs2110/2018su
Graph Algorithms

- Search
 - Depth-first search
 - Breadth-first search
- Shortest paths
 - Dijkstra's algorithm
- Spanning trees
 - Algorithms based on properties
 - Minimum spanning trees
 - Prim's algorithm
Search (Again)
Search on Graphs

- Given a graph \((V,E)\) and a vertex \(u \in V\), want to visit every node that is reachable from \(u\)
Search on Graphs

- Given a graph \((V,E)\) and a vertex \(u \in V\), want to visit every node that is reachable from \(u\)
There are many paths to some nodes.

How do we visit all nodes efficiently, without doing extra work?

Given a graph \((V,E)\) and a vertex \(u \in V\), want to visit every node that is reachable from \(u\)
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */

```java
public static void dfs(int u) {
    visit(u);
    for all edges (u,v):
        if(!visited[v]):
            dfs(v);
}
```

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

```java
dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8
```
public class Node {
 boolean visited;
 List<Node> neighbours;

 /** Visit all nodes reachable on unvisited paths from this node.
 * Precondition: this node is unvisited. */
 public void dfs() {
 visited = true;
 for (Node n : neighbours) {
 if (!n.visited) n.dfs();
 }
 }
}

Each vertex of the graph is an object of type Node

No need for a parameter. The object is the node.
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are reachable along unvisited paths, and m edges.

dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are reachable along unvisited paths, and m edges.

Visits every vertex in the graph exactly once and every edge exactly once.

dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8
Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are reachable along unvisited paths, and m edges.

Worst-case time complexity: $O(n + m)$

dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8
DFS Quiz

In what order would a DFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.

- 1, 2, 3, 4, 5, 6, 7, 8
- 1, 2, 5, 6, 3, 6, 7, 4, 7, 8
- 1, 2, 5, 3, 6, 4, 7, 8
- 1, 2, 5, 6, 3, 7, 4, 8
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */

```java
public static void dfs(int u) {
    Stack s = (u); // Not Java!
    while (s is not empty) {
        u = s.pop();
        if (u not visited) {
            visit u;
            for each edge (u, v):
                s.push(v);
        }
    }
}
```

Intuition: Visit all vertices that are reachable along unvisited paths from the current node.
Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the source node.
Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the source node.
Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the source node.
In what order would a BFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.

- 1, 2, 3, 4, 5, 6, 7, 8
- 1, 2, 3, 4, 5, 6, 6, 7, 7, 8
- 1, 2, 5, 3, 6, 4, 7, 8
- 1, 2, 5, 6, 3, 7, 4, 8
** Intuition: Iteratively process the graph in "layers" moving further away from the source node.

//** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */
public static void bfs(int u) {
 Queue q = (u); // Not Java!
 while (q is not empty) {
 u = q.remove();
 if (u not visited) {
 visit u;
 for each (u, v):
 q.add(v);
 }
 }
}
Analysing BFS

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

Suppose there are \(n \) vertices that are reachable along unvisited paths, and \(m \) edges

Worst-case time complexity: \(O(n + m) \)

bfs(1) visits the nodes in this order: 1, 2, 7, 3, 5, 8
Comparing Search Algorithms

<table>
<thead>
<tr>
<th></th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visits</td>
<td>1, 2, 3, 5, 7, 8</td>
<td>1, 2, 5, 7, 3, 8</td>
</tr>
<tr>
<td>Time</td>
<td>O(n + m)</td>
<td>O(n + m)</td>
</tr>
<tr>
<td>Space</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

Diagram

```
1 ------- 2 ------- 3
|       |       |
7 ------- 5 ------- 4
|       |       |
6 ------- 8 ------- 1
```
Problem: In what order should I take CS classes at Cornell?
Can I get a **linear ordering** of the graph such that all courses that are prereqs happen before courses that are not
Can I get a linear ordering of the graph such that all courses that are prereqs happen before courses that are not
Can I get a **linear ordering** of the graph such that all courses that are prerequisites happen before courses that are not?

Graphically: can I arrange all the nodes such that edges all point to the right?
A topological sort of a graph G is a linear ordering of all its vertices such that if G contains an edge (u,v) then u appears before v in the ordering.
Topological Sort, Formally

- A topological sort of a graph G is a linear ordering of all its vertices such that:
 - if G contains an edge (u,v) then u appears before v in the ordering.

- Can be computed efficiently using DFS
Let’s revisit our DFS algorithm

- Every node has a **discovery time** u
 - The time when we mark it as visited for the first time

- Every node has a **finishing time** f
 - The time when we explore the last of its edge
public class Node {
 boolean visited; List<Node> neighbours;
 int discoveryTime; int finishingTime;

 public void dfs() {
 visited = true;
 discoveringTime = time;
 for (Node n: neighbours) {
 if (!n.visited) n.dfs();
 }
 time++;
 finishingTime = time;
 }
}
Topological Sort

- Revisit DFS as follows:
 - For every node \(u \) in \(G \), run \(u.dfs() \);
 - As each vertex is finished, insert it into the front of a linked list
 - Return the linked list of vertices
Topological Sort

- Revisit DFS as follows:
 - For every node u in G, run $u.dfs()$;
 - As each vertex is finished, insert it into the front of a linked list
 - Return the linked list of vertices

- Key idea: inserting a vertex in front of the list when finished ensures that vertices v with an edge (u,v) always appear before vertices v in the linked list (as they will marked as finished after v)
Topological Sort
Topological Sort

Time = 2
Topological Sort

Time = 3
Topological Sort

Time = 4
Topological Sort

Time = 5
Topological Sort

Time = 6
Topological Sort

Time = 7
Topological Sort

Time = 8
Topological Sort

Time = 9
Topological Sort

Time = 10
Strongly Connected Components

- **Strongly Connected Component**
- A strongly connected component of a directed graph $G = (V,E)$ is a maximal set of vertices C such that for every pair of vertices u and v in C, we have both v is reachable from u and u is reachable from v. That is u and v are reachable from each other.
Strongly Connected Component

A strongly connected component of a directed graph $G = (V,E)$ is a maximal set of vertices C such that for every pair of vertices u and v in C, we have both v is reachable from u and u is reachable from v. That is u and v are reachable from each other.
Strongly Connected Component

A strongly connected component of a directed graph $G = (V,E)$ is a maximal set of vertices C such that for every pair of vertices u and v in C, we have both v is reachable from u and u is reachable from v. That is u and v are reachable from each other.

Reduce the graph to its SCC => the component graph

v is reachable from u and u is reachable from v
Strongly Connected Components

- Often used as a subprocedure: partition the graph into its SCC and run an algorithm on each partition
- Used to identify **communities** of people on social networks
- Used to identify **bots/spam pages**
Kosaraju’s algorithm

- Leverages observation that, if there exists a number of SCC in the graph G, then those SCC stay the same in the graph G^T (with all of its edges flipped).

- Idea is to compute DFS of the graph to get finishing times, transpose that graph, then run DFS(u) for every node in that order.

- The first node that we traverse is either
 - Already part of a strongly connected component
 - The root of a new connected component.
Kosaraju’s algorithm

- First compute finishing times of all vertices

Graph Representation:
- Vertices: 1, 2, 3, 4, 5, 6, 7, 8
- Edges: 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7, 7 to 8, 8 to 1
Kosaraju’s algorithm

- First compute finishing times of all vertices

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>
Kosaraju’s algorithm

- Compute transpose of G (flip all edges)
Kosaraju’s algorithm

- Compute transpose of G (flip all edges)
Kosaraju’s algorithm

- Sort vertices in reverse order of their finishing time
Kosaraju’s algorithm

- Go through each vertex v
 - Set v.scc = v. Then run DFS(v)
 - For all reachable v'
 - If v'.scc = null, then assign v'.scc = v
Kosaraju’s algorithm

- Go through each vertex v
- Set v.scc = v. Then run DFS(v)
- For all reachable v’
 - If v’.scc = null, then assign v’.scc = v
Kosaraju’s algorithm

- Go through each vertex \(v \)
 - Set \(v.scc = v \). Then run DFS(\(v \))
 - For all reachable \(v' \)
 - If \(v'.scc = \) null, then assign \(v'.scc = v \)
Kosaraju’s algorithm

- Go through each vertex \(v \)
 - Set \(v.scc = v \). Then run DFS(\(v \))
 - For all reachable \(v' \)
 - If \(v'.scc = \) null, then assign \(v'.scc = v \)
Kosaraju’s algorithm

- Go through each vertex \(v \)

- Set \(v.scc = v \). Then run DFS(\(v \))

- For all reachable \(v' \)
 - If \(v'.scc = \text{null} \), then assign \(v'.scc = v \)
Kosaraju’s algorithm

- Go through each vertex v
 - Set v.scc = v. Then run DFS(v)
 - For all reachable v’
 - If v’.scc = null, then assign v’.scc = v
Kosaraju’s algorithm

- Go through each vertex v
 - Set $v\.scc = v$. Then run DFS(v)
 - For all reachable v'
 - If $v'\.scc = \text{null}$, then assign $v'\.scc = v$
Kosaraju’s algorithm

- Go through each vertex v

- Set v.scc = v. Then run DFS(v)
- For all reachable v’
 - If v’.scc = null, then assign v’.scc = v
Kosaraju’s algorithm

- Go through each vertex \(v \)
- Set \(v.scc = v \). Then run DFS(\(v \))
- For all reachable \(v' \)
 - If \(v'.scc = \) null, then assign \(v'.scc = v \)
Kosaraju’s algorithm

- Go through each vertex \(v \)
- Set \(v\text{.scc} = v \). Then run DFS\((v)\)
- For all reachable \(v' \)
 - If \(v'\text{.scc} = \text{null} \), then assign \(v'\text{.scc} = v \)
Kosaraju’s algorithm

- Go through each vertex v
- Set $v.scc = v$. Then run DFS(v)
- For all reachable v'
 - If $v'.scc = \text{null}$, then assign $v'.scc = v$
Kosaraju’s algorithm

- Go through each vertex v
 - Set v.scc = v. Then run DFS(v)
 - For all reachable v’
 - If v’.scc = null, then assign v’.scc = v
Kosaraju’s algorithm

- Go through each vertex \(v \)
 - Set \(v.scc = v \). Then run DFS(\(v \))
 - For all reachable \(v' \)
 - If \(v'.scc = \) null, then assign \(v'.scc = v \)
Kosaraju’s algorithm

- Go through each vertex v
- Set $v.scc = v$. Then run DFS(v)
- For all reachable v'
 - If $v'.scc = \text{null}$, then assign $v'.scc = v$
Kosaraju’s algorithm

- Go through each vertex v
 - Set $v.scc = v$. Then run DFS(v)
 - For all reachable v'
 - If $v'.scc = \text{null}$, then assign $v'.scc = v$
Kosaraju’s algorithm

- Go through each vertex v
 - Set $v.scc = v$. Then run DFS(v)
 - For all reachable v'
 - If $v'.scc = null$, then assign $v'.scc = v$
Kosaraju’s algorithm

- Go through each vertex \(v \)
 - Set \(v.scc = v \). Then run DFS(\(v \))
 - For all reachable \(v' \)
 - If \(v'.scc = \) null, then assign \(v'.scc = v \)
Kosaraju’s algorithm

- Go through each vertex v
 - Set v.scc = v. Then run DFS(v)
 - For all reachable v’
 - If v’.scc = null, then assign v’.scc = v

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Kosaraju’s algorithm

- Go through each vertex v
 - Set v.scc = v. Then run DFS(v)
 - For all reachable v’
 - If v’.scc = null, then assign v’.scc = v
Kosaraju’s algorithm

- Go through each vertex \(v \)
 - Set \(v\text{.scc} = v \). Then run DFS(\(v \))
 - For all reachable \(v' \)
 - If \(v'\text{.scc} = \text{null} \), then assign \(v'\text{.scc} = v \)
Intuition revisited

- Once visit a node in a strongly connected component, will visit:
 - All nodes n in that strongly connected nodes
 - Nodes n' that leave the strongly connected components

- When compute the transpose, switching the edges
 - Has no effects on nodes n in the SCC (because (u,v) and (v,u) are both paths in the SCC)
 - Means that nodes n' are no longer reachable
Kosaraju’s algorithm

```java
findSCC(Graph<T> g) {
    List<GraphNode<T>> topoSort = DFS(G);
    topoSort.sort(//reverse finishing time);
    transpose(G);
    for (GraphNode u: topoSortReverse) {
        if (u.scc == null) assignSCC(u,u);
    }

    assignSCC(GraphNode<T> u, GraphNode<T> root) {
        assert(u.scc == null);
        u.scc = root;
        for (GraphNode<T> n: u.neighbours) {
            assignSCC(n,root);
        }
    }
}
```

Add a parameter `GraphNode<T> scc` to every graph node.
Other SCC algorithms

- Kosaraju's algorithm easy to understand, but requires two DFS calls

- Tarjan’s algorithm (former Cornell prof!) and Djikstra’s algorithm are harder to reason about but require only one DFS call and one or more stacks
 - Read up if you’re interested!