“Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better.”

- Edsger Dijkstra
What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?
- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?
Basic Step: one “constant time” operation

Constant time operation: its time doesn’t depend on the size or length of anything. Always roughly the same. Time is bounded above by some number.

Basic step:
- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)
Counting Steps

// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k + 1) {
 sum = sum + k;
}

All basic steps take time 1.
There are n loop iterations.
Therefore, takes time proportional to n.

Statement:
sum = 0;
k = 1;
k <= n
k = k + 1;
sum = sum + k;
Total steps:
times done
1
1
n + 1
n
3n + 3

Linear algorithm in n
Not all operations are basic steps

// Store n copies of 'c' in s
s = "";

// inv: s contains k-1 copies of 'c'
for (int k = 1; k <= n; k = k+1) {
 s = s + 'c';
}

Concatenation is not a basic step. For each k, concatenation creates and fills k array elements.
s = s + “c”; is NOT constant time.
It takes time proportional to 1 + length of s
Not all operations are basic steps

// Store n copies of ‘c’ in s
s = "";

// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1)
{
 s = s + 'c';
}

Concatenation is not a basic step. For each k, concatenation creates and fills k array elements.

<table>
<thead>
<tr>
<th>Statement</th>
<th># times</th>
<th># steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>s = "";</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k = 1;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k <= n</td>
<td>n+1</td>
<td>1</td>
</tr>
<tr>
<td>k = k+1;</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>s = s + 'c';</td>
<td>n</td>
<td>k</td>
</tr>
<tr>
<td>Total steps:</td>
<td>n*(n-1)/2 + 2n + 3</td>
<td></td>
</tr>
</tbody>
</table>

Quadratic algorithm in n
In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What’s important is that:

- One is linear in n—takes time proportional to n
- One is quadratic in n—takes time proportional to n^2
Looking at execution speed

Number of operations executed

2n+2, n+2, n are all linear in n, proportional to n

n+2, n are all linear in n, proportional to n

size n of the array

2n + 2 ops
n + 2 ops
n ops
What do we want from a definition of “runtime complexity”?

1. Distinguish among cases for large n, not small n

2. Distinguish among important cases, like
 - $n \times n$ basic operations
 - n basic operations
 - $\log n$ basic operations
 - 5 basic operations

3. Don’t distinguish among trivially different cases.
 - 5 or 50 operations
 - n, $n+2$, or 4n operations
Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

Get out far enough (for \(n \geq N \))

\(f(n) \) is at most \(c \cdot g(n) \)

Intuitively, \(f(n) \) is \(O(g(n)) \) means that \(f(n) \) grows like \(g(n) \) or slower
Prove that \((2n^2 + n) \) is \(\mathcal{O}(n^2) \)

Formal definition: \(f(n) \) is \(\mathcal{O}(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

Example: Prove that \((2n^2 + n) \) is \(\mathcal{O}(n^2) \)

Methodology:

Start with \(f(n) \) and slowly transform into \(c \cdot g(n) \):
- Use = and \(\leq \) and < steps
- At appropriate point, can choose \(N \) to help calculation
- At appropriate point, can choose \(c \) to help calculation
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

\[
\begin{align*}
\text{f(n)} & = \text{<definition of f(n)> } \\
2n^2 + n & \leq \text{<for n \geq 1, n \leq n^2>} \\
2n^2 + n^2 & = \text{<arith> } \\
3n^2 & = \text{<definition of g(n) = n^2>} \\
3*g(n) & = \text{<definition of g(n) = n^2> }
\end{align*}
\]

Transform \(f(n)\) into \(c \cdot g(n)\):

- Use \(=, \leq, <\) steps
- Choose \(N\) to help calc.
- Choose \(c\) to help calc

Choose \(N = 1\) and \(c = 3\)
Prove that \(100 \, n + \log \, n\) is \(O(n)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

\[
f(n) = \text{<put in what } f(n) \text{ is>}
\]

\[
100 \, n + \log \, n
\]

\[
\leq \text{<We know } \log \, n \leq n \text{ for } n \geq 1>
\]

\[
100 \, n + n
\]

\[
= \text{<arith>}
\]

\[
101 \, n
\]

\[
= \text{<g(n) = n>}
\]

\[
101 \, g(n)
\]

Choose

\(N = 1\) and \(c = 101\)
Let \(f(n) = 3n^2 + 6n - 7 \)
- \(f(n) \) is \(O(n^2) \)
- \(f(n) \) is \(O(n^3) \)
- \(f(n) \) is \(O(n^4) \)
- \(\ldots \)

\(p(n) = 4n \log n + 34n - 89 \)
- \(p(n) \) is \(O(n \log n) \)
- \(p(n) \) is \(O(n^2) \)

\(h(n) = 20 \cdot 2^n + 40n \)
- \(h(n) \) is \(O(2^n) \)

\(a(n) = 34 \)
- \(a(n) \) is \(O(1) \)

Only the *leading* term (the term that grows most rapidly) matters.

If it’s \(O(n^2) \), it’s also \(O(n^3) \) etc! However, we always use the smallest one.
Do NOT say or write \(f(n) = O(g(n)) \)

Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

\(f(n) = O(g(n)) \) is simply **WRONG**. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use \(= \) this way.

We know that \(n+2 \) is \(O(n) \) and \(n+3 \) is \(O(n) \). Suppose we use \(= \)

\[
\begin{align*}
 n+2 &= O(n) \\
 n+3 &= O(n)
\end{align*}
\]

But then, by transitivity of equality, we have \(n+2 = n+3 \). We have proved something that is false. Not good.

Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th>operations</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>n log n</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n²</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>3n²</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n³</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2ⁿ</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>Time Bound</th>
<th>Description</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>constant</td>
<td>excellent</td>
</tr>
<tr>
<td>O(log n)</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>O(n)</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>O(n log n)</td>
<td>n log n</td>
<td>pretty good</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>quadratic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>O(2^n)</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>
Consider two different data structures that could store your data: an array or a doubly-linked list. In both cases, let n be the size of your data structure (i.e., the number of elements it is currently storing). What is the running time of each of the following operations:

- get(i) using an array
- get(i) using a DLL
- insert(v) using an array
- insert(v) using a DLL
Java Lists

- `java.util` defines an interface `List<E>`
- implemented by multiple classes:
 - `ArrayList`
 - `LinkedList`
Search for v in b[0..]

/** returns the index of the first occurrence of v in array b */
* Precondition: b is sorted
**/

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
Search for \(v \) in \(b[0..] \)

/**
 * returns the index of the first occurrence of \(v \) in array \(b \)
 * Precondition: \(b \) is sorted
 **/

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
The Four Loopy Questions

- Does it start right?
 Is \(\{Q\} \) \(\text{init} \) \(\{P\} \) true?

- Does it continue right?
 Is \(\{P \&\& B\} \) \(S \) \(\{P\} \) true?

- Does it end right?
 Is \(P \&\& !B \Rightarrow R \) true?

- Will it get to the end?
 Does it make progress toward termination?
Search for v in $b[0..]$}

/** returns the index of the first occurrence of v in array b
 * Precondition: b is sorted **/

```
i = 0;
while (b[i] < v ) {
    i = i+1;
}
```

Each iteration takes constant time.

Worst case: $b.length$ iterations

Linear algorithm: $O(b.length)$
Another way to search for v in b[0..]

/** returns the index of the first occurrence of v in array b
 * Precondition: b is sorted
**/

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
Another way to search for v in b[0..]

/** returns the index of the first occurrence of v in array b
 * Precondition: b is sorted */

```java
while (i < k - 1) {
    int j = (k + i) / 2;
    b[j] < v ? i = j : k = j
}

Each iteration takes constant time.

Worst case: log(b.length) iterations
```

Logarithmic: \(O(\log(b.\text{length})) \)
Another way to search for v in b[0..]

/** returns the index of the first occurrence of v in array b
 * Precondition: b is sorted */

This algorithm is better than binary searches that stop when v is found.
1. Gives good info when v not in b.
2. Works when b is empty.
3. Finds first occurrence of v, not arbitrary one.
4. Correctness, including making progress, easily seen using invariant

i= -1;
k= b.length;
while (i < k-1) {
 int j=(k+i)/2;
 b[j]<v ? i=j : k=j
}

Each iteration takes constant time.

Worst case: log(b.length) iterations

Logarithmic: O(log(b.length))
Dutch National Flag Algorithm
Dutch National Flag Algorithm

Dutch national flag. Swap $b[0..n-1]$ to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of $b[0..n]$ to truthify postcondition R:

<table>
<thead>
<tr>
<th>Q: b</th>
<th>0</th>
<th>?</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>R: b</td>
<td>reds</td>
<td>whites</td>
<td>blues</td>
</tr>
<tr>
<td>P1: b</td>
<td>reds</td>
<td>whites</td>
<td>blues</td>
</tr>
<tr>
<td>P2: b</td>
<td>reds</td>
<td>whites</td>
<td>?</td>
</tr>
</tbody>
</table>
Dutch National Flag Algorithm: invariant P1

<table>
<thead>
<tr>
<th>Q: b</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R: b</th>
<th>reds</th>
<th>whites</th>
<th>blues</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| P1: b | reds | whites | blues | ? |
|-------|------|--------|-------|
| 0 | | | |

\[
\begin{align*}
 & h= 0; k= h; p= k; \\
 & \text{while (} p \neq n \text{)} \{ \\
 & \quad \text{if (} b[p] \text{ blue) } p= p+1; \\
 & \quad \text{else if (} b[p] \text{ white) } \\
 & \quad \quad \{ \\
 & \quad \quad \quad \text{swap } b[p], b[k]; \\
 & \quad \quad \quad p= p+1; k= k+1; \\
 & \quad \quad \} \\
 & \quad \text{else } \{ \text{ // } b[p] \text{ red} \\
 & \quad \quad \text{swap } b[p], b[h]; \\
 & \quad \quad \text{swap } b[p], b[k]; \\
 & \quad \quad p= p+1; h= h+1; k= k+1; \\
 & \quad \} \\
 & \} \\
\end{align*}
\]
Dutch National Flag Algorithm: invariant P2

Q: b

R: b

P2: b

0 n

0 n

h k p

h= 0; k= h; p= n;

while (k != p) {
 if (b[k] white) k= k+1;
 else if (b[k] blue) {
 p= p-1;
 swap b[k], b[p];
 }
 else { // b[k] is red
 swap b[k], b[h];
 h= h+1; k= k+1;
 }
}
Asymptotically, which algorithm is faster?

Invariant 1

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>reds</td>
<td>whites</td>
<td>blues</td>
<td>?</td>
</tr>
</tbody>
</table>

h = 0; k = h; p = k;
while (p != n) {
 if (b[p] blue) p = p + 1;
 else if (b[p] white) {
 swap b[p], b[k];
 p = p + 1; k = k + 1;
 }
 else { // b[p] red
 swap b[p], b[h];
 swap b[p], b[k];
 p = p + 1; h = h + 1; k = k + 1;
 }
}

Invariant 2

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>reds</td>
<td>whites</td>
<td>?</td>
<td>blues</td>
</tr>
</tbody>
</table>

h = 0; k = h; p = n;
while (k != p) {
 if (b[k] white) k = k + 1;
 else if (b[k] blue) {
 p = p - 1;
 swap b[k], b[p];
 }
 else { // b[k] is red
 swap b[k], b[h];
 swap b[k], b[p];
 h = h + 1; k = k + 1;
 }
}
Asymptotically, which algorithm is faster?

Invariant 1

\[
\begin{array}{c|c|c|c}
0 & \text{reds} & \text{whites} & \text{blues} \\
\hline
n & ? & ? & ?
\end{array}
\]

might use 2 swaps per iteration

```java
if (b[p] blue) p = p+1;
else if (b[p] white) {
    swap b[p], b[k];
p = p+1; k = k+1;
}
else {
    // b[p] red
}
if (b[k] white) k = k+1;
else if (b[k] blue) {
p = p-1;
}
swap b[k], b[p];
swap b[k], b[h];
h = h+1; k = k+1;
``` 

Invariant 2

\[
\begin{array}{c|c|c|c}
0 & \text{reds} & \text{whites} & \text{blues} \\
\hline
n & ? & ? & ?
\end{array}
\]

uses at most 1 swap per iteration

These two algorithms have the same asymptotic running time (both are \(O(n)\))