"Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better.”

- Edsger Dijkstra

ASYMPTOTIC COMPLEXITY

Lecture 10
CS2110 – Spring 2018

What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?
- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.
SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?

Basic Step: one “constant time” operation

Constant time operation: its time doesn’t depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:
- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)

Counting Steps

// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1) {
 sum= sum + k;
}
All basic steps take time 1.
There are n loop iterations.
Therefore, takes time proportional to n.

Statement: # times done
sum= 0; 1
k= 1; 1
k <= n n+1
k= k+1; n
sum= sum + k; n
Total steps: 3n + 3

Linear algorithm in n

Not all operations are basic steps

// Store n copies of ‘c’ in s
s= "";
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1) {
 s= s + ‘c’;
}
Concatenation is not a basic step. For each k, concatenation creates and fills k array elements.

String Concatenation

s= s + "c"; is NOT constant time.
It takes time proportional to 1 + length of s
Not all operations are basic steps

```c
// Store n copies of 'c' in s
s = "";
// inv: s contains k-1 copies of 'c'
for (int k = 1; k <= n; k = k+1) {
    s = s + 'c';
}
```

Concatenation is not a basic step. For each k, concatenation creates and fills k array elements.

<table>
<thead>
<tr>
<th>Statement</th>
<th># times</th>
<th># steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>s = "";</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k = 1;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k <= n;</td>
<td>n+1</td>
<td>1</td>
</tr>
<tr>
<td>k = k+1;</td>
<td>n</td>
<td>k</td>
</tr>
</tbody>
</table>

Total steps: \(n \cdot (n-1)/2 + 2n + 3 \)

Linear versus quadratic

```c
// Store sum of 1..n in sum
sum = 0;
// inv: sum contains sum of 1..(k-1)
for (int k = 1; k <= n; k = k+1) {
    sum = sum + n;
}
```

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What’s important is that:

- One is linear in \(n \) — takes time proportional to \(n \)
- One is quadratic in \(n \) — takes time proportional to \(n^2 \)

Looking at execution speed

<table>
<thead>
<tr>
<th>Number of operations executed</th>
<th>2n+2, n+2, n are all linear in n, proportional to n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5 ops</td>
</tr>
<tr>
<td>1</td>
<td>2n ops</td>
</tr>
<tr>
<td>2</td>
<td>n+2 ops</td>
</tr>
<tr>
<td>3</td>
<td>n*2 ops</td>
</tr>
<tr>
<td>…</td>
<td>Constant time</td>
</tr>
</tbody>
</table>

What do we want from a definition of “runtime complexity”?

1. Distinguish among cases for large \(n \), not small \(n \)
2. Distinguish among important cases, like
 - \(n^2 \) basic operations
 - \(n \) basic operations
 - \(\log n \) basic operations
 - \(5 \) basic operations
3. Don’t distinguish among trivially different cases.
 - \(5 \) or 50 operations
 - \(n, n+2, \) or \(4n \) operations

"Big O" Notation

Formal definition: \(f(n) = O(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

```
\[
\text{Get out far enough for } n \geq N \\
\text{Intuitively, } f(n) = O(g(n)) \text{ means that } f(n) \text{ grows like } g(n) \text{ or slower}
\]
```

Prove that \((2n^2 + n) = O(n^2) \)

Formal definition: \(f(n) = O(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

Example: Prove that \((2n^2 + n) = O(n^2) \)

Methodology:
- Start with \(f(n) \) and slowly transform into \(c \cdot g(n) \):
 - Use \(= \) and \(\leq \) and \(< \) steps
 - At appropriate point, can choose \(N \) to help calculation
 - At appropriate point, can choose \(c \) to help calculation
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n) = O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

\[
\begin{align*}
f(n) &= \text{definition of } f(n) > \\quad \text{Use } =, \leq, < \text{ steps } \quad \text{Choose } N \text{ to help calc.} \\
2n^2 + n &= \text{<arith>} \quad \text{Choose } c \text{ to help calc} \\
3n^2 &= \text{<definition of } g(n) = n^2> \\
3^n g(n) &= \text{Choose } N = 1 \text{ and } c = 3 \\
\end{align*}
\]

\(O(\ldots)\) Examples

Let \(f(n) = 3n^2 + 6n - 7\)
- \(f(n) = O(n^2)\)
- \(f(n) = O(n^2)\)
- \(f(n) = O(n)\)
- \(f(n) = \ldots\)
- \(p(n) = 4n \log n + 34n = 89\)
- \(p(n) = O(n \log n)\)
- \(p(n) = O(n^2)\)
- \(h(n) = 20 - 2 + 40n\)
- \(h(n) = O(2^n)\)
- \(o(n) = 34\)
- \(o(n) = O(1)\)

Only the leading term (the term that grows most rapidly) matters

If it’s \(O(n^2)\), it’s also \(O(n^3)\) etc! However, we always use the smallest one

Do NOT say or write \(f(n) = O(g(n))\)

\(f(n) = O(g(n))\) is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use = this way.

We know that \(n+2\) is \(O(n)\) and \(n+3\) is \(O(n^2)\). Suppose we use

\[
\begin{align*}
n + 2 &= O(n) \\
n + 3 &= O(n^2) \\
\end{align*}
\]

But then, by transitivity of equality, we have \(n + 2 = n + 3\).
We have proved something that is false. Not good.

Problem-size examples

Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th>operations</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>(n \log n)</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>(n^2)</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>(3n^2)</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>(n^3)</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>(2^n)</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>

Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>(O(\ldots))</th>
<th>constant</th>
<th>excellent</th>
<th>linear</th>
<th>good</th>
<th>quadratic</th>
<th>maybe OK</th>
<th>cubic</th>
<th>maybe OK</th>
<th>exponential</th>
<th>too slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td></td>
</tr>
<tr>
<td>(O(\log n))</td>
<td></td>
</tr>
<tr>
<td>(O(n))</td>
<td></td>
</tr>
<tr>
<td>(O(n \log n))</td>
<td></td>
</tr>
<tr>
<td>(O(n^2))</td>
<td></td>
</tr>
<tr>
<td>(O(n^3))</td>
<td></td>
</tr>
<tr>
<td>(O(2^n))</td>
<td></td>
</tr>
</tbody>
</table>
Big O Poll

Consider two different data structures that could store your data: an array or a doubly-linked list. In both cases, let \(n \) be the size of your data structure (i.e., the number of elements it is currently storing). What is the running time of each of the following operations:

- get\((i) \) using an array
- get\((i) \) using a DLL
- insert\((v) \) using an array
- insert\((v) \) using a DLL

Java Lists

- \texttt{java.util} defines an interface \texttt{List\<E\>}
- implemented by multiple classes:
 - \texttt{ArrayList}
 - \texttt{LinkedList}

Search for \(v \) in \(b[0..] \)

returns the index of the first occurrence of \(v \) in array \(b \)

* Precondition: \(b \) is sorted

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

The Four Loopy Questions

- Does it start right?
 - Is \(\{Q\} \) init \(\{P\} \) true?
- Does it continue right?
 - Is \(\{P \&\& B\} \) S \(\{P\} \) true?
- Does it end right?
 - Is \(P \&\& \neg B \Rightarrow R \) true?
- Will it get to the end?
 - Does it make progress toward termination?

Search for \(v \) in \(b[0..] \)

returns the index of the first occurrence of \(v \) in array \(b \)

* Precondition: \(b \) is sorted

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Linear algorithm: \(\Theta(b.\text{length}) \)

Each iteration takes constant time.
Worst case: \(b.\text{length} \) iterations
Another way to search for \(v \) in \(b[0..] \)

** returns the index of the first occurrence of \(v \) in array \(b \)

* Precondition: \(b \) is sorted

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!

\[
i= -1; \quad k= b.length; \\
\text{while } (i < k-1) \{ \\
\quad \text{int } j=(k+i)/2; \\
\quad \text{if } b[j]<v \text{? } i= j; \text{ } k=j \\
\} \\
\]

Each iteration takes constant time.

\[\text{Worst case: } \log(b.length) \]

Logarithmic: \(O(\log(b.length)) \)

This algorithm is better than binary searches that stop when \(v \) is found.
1. Gives good info when \(v \) not in \(b \).
2. Works when \(b \) is empty.
3. Finds first occurrence of \(v \), not arbitrary one.
4. Correctness, including making progress, easily seen using invariant

Logarithmic: \(O(\log(b.length)) \)

Dutch National Flag Algorithm

** Dutch national flag. Swap \(b[0..n-1] \) to put the reds first, then the whites, then the blues. That is, given precondition \(Q \), swap values of \(b[0..n] \) to truthify postcondition \(R \):

\[
\begin{align*}
Q: b & \quad ? & \quad n \\
0 & \quad 0 & \quad n \\
R: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} \\
0 & \quad 0 & \quad n \\
P1: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n \\
P2: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n
\end{align*}
\]

Dutch National Flag Algorithm: invariant P1

\[
\begin{align*}
0 & \quad \text{h} & \quad k & \quad p & \quad n \\
Q: b & \quad ? & \quad n \\
0 & \quad 0 & \quad n \\
R: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} \\
0 & \quad 0 & \quad n \\
P1: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n \\
P2: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n
\end{align*}
\]

Dutch National Flag Algorithm

** Dutch national flag. Swap \(b[0..n-1] \) to put the reds first, then the whites, then the blues. That is, given precondition \(Q \), swap values of \(b[0..n] \) to truthify postcondition \(R \):

\[
\begin{align*}
Q: b & \quad ? & \quad n \\
0 & \quad 0 & \quad n \\
R: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} \\
0 & \quad 0 & \quad n \\
P1: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n \\
P2: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n
\end{align*}
\]

Dutch National Flag Algorithm: invariant P1

\[
\begin{align*}
0 & \quad \text{h} & \quad k & \quad p & \quad n \\
Q: b & \quad ? & \quad n \\
0 & \quad 0 & \quad n \\
R: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} \\
0 & \quad 0 & \quad n \\
P1: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n \\
P2: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n
\end{align*}
\]

Dutch National Flag Algorithm

** Dutch national flag. Swap \(b[0..n-1] \) to put the reds first, then the whites, then the blues. That is, given precondition \(Q \), swap values of \(b[0..n] \) to truthify postcondition \(R \):

\[
\begin{align*}
Q: b & \quad ? & \quad n \\
0 & \quad 0 & \quad n \\
R: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} \\
0 & \quad 0 & \quad n \\
P1: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n \\
P2: b & \quad \text{reds} & \quad \text{whites} & \quad \text{blues} & \quad ? \\
0 & \quad 0 & \quad n
\end{align*}
\]
Dutch National Flag Algorithm: invariant P2

```
Q: b
 0 ? n
R: b
 0 h k p n
P2: b
 0 h k p n
h = 0; k = h; p = n;
while (k != p) {
  if (b[k] white) k = k + 1;
  else if (b[k] blue) {
    p = p + 1;
    swap b[k], b[p];
  } else { // b[k] is red
    swap b[k], b[h];
    h = h + 1; k = k + 1;
  }
}
```

Asymptotically, which algorithm is faster?

```
Invariant 1
0 n 0
reds whites blues ?
```

```
Invariant 2
0 n 0
reds whites ? blues
```

```
might use 2 swaps per iteration
uses at most 1 swap per iteration
```

These two algorithms have the same asymptotic running time (both are O(n))