Name: NetID:
Prelim 1
CS 2110, 13 March 2018, 5:30 PM
1 2 3 4 5 6 Total
Question | Name Short Exception | Recursion 00 Loop
answer handling invariants
Max 1 30 11 14 30 14 100
Score
Grader

1.

The exam is closed book and closed notes. Do not begin until instructed.
You have 90 minutes. Good luck!

Write your name and Cornell NetID, legibly, at the top of every page! There are 6 questions
on 10 numbered pages, front and back. Check that you have all the pages. When you hand
in your exam, make sure your pages are still stapled together. If not, please use our stapler
to reattach all your pages!

We have scrap paper available. If you do a lot of crossing out and rewriting, you might want
to write code on scrap paper first and then copy it to the exam so that we can make sense of
what you handed in.

Write your answers in the space provided. Ambiguous answers will be considered incorrect.
You should be able to fit your answers easily into the space provided.

In some places, we have abbreviated or condensed code to reduce the number of pages that
must be printed for the exam. In others, code has been obfuscated to make the problem more
difficult. This does not mean that it’s good style.

Academic Integrity Statement: I pledge that I have neither given nor received any unau-
thorized aid on this exam. I will not talk about the exam with anyone in this course who has
not yet taken prelim 1.

(signature)

Name (1 point)

Write your name and NetID, legibly, at the top of every page of this exam.

1 of 10

Name:

NetID:

2. Short Answer (30 points)

(a) 6 points. Below are six expressions. To the right of each, write its value.

1. (int) 'g' == 'g'

. (char) ('z' - 2)

. new Character('c') == new Character('c')

. "I love CS2110".substring(5).substring(2, 5)

2
3
4. (new Double(2.0 * 3.0)).equals(new Double(1.0 * 6.0))
5
6

.k==2]6/ (k-2 '=7 (Note: kis of type int)

(b) 5 points. State whether each of the following statements is true or false.

1. String x= "Hello World"; x= '3'; will compile.

2. The following code declares a two-dimensional array of ints: int[2] myInts;

3. “Generic types” refers to the built-in Java types: byte, short, int, long, float, double, boolean,

char.

4. Tt is possible for a method to be both overridden and overloaded.

5. One purpose of wrapper class Integer is to treat an int value as an object.

(c) 4 points.
Consider the following classes:

public class Boatl {
public abstract String getName();
}
public class Boat2 extends Boatl {
public Boatl makeFriend() {
Boatl friend= new Boatl1();
return friend;
}
}
public class Boat3 extends Boatl {
public String getName() {
return "Boaty McBoatface";
}
}
public class Boat4 extends Boatl {
private String name;
public Boat4(String n) {
name= n;
}
}

I. Which classes need to be abstract in order to
compile?

II. Which classes will fail to compile even if they

are abstract?

2 of 10

Name: NetID:

(d) 8 points.
This function returns the sum of all the even integers in an array:

/** Return the sum of the even integers in array b (return O if b is null). */
public static int sumE(int[] b) {
if (b == null) return O;
int sum= O;
for (int i= 0; i < b.length; i=1i + 1) {
it (bli] % 2 == 0){
sum= sum + b[i];
}
}
return sum;

}

[. Write down, in English, at least 5 distinct test cases that you need to consider.

II. Write down, in Java, the code for these test cases. Assume that function sumE is declared in
class U. Hint: to declare an array with the values 1, 2, and 3, you can use: new int[]{1, 2, 3}.

QTest
public void testSumE() {

3 of 10

Name: NetID:

(e) 4 points.
Write the algorithm for executing the procedure call p(3, 2.1).

(f) 3 points.
In A3, the doubly-linked list class DLLList had these fields:

private Node first; // first node of linked list (null if size is 0)\\
private Node last; // last node of linked list (null if size is 0)\\

private int size; // Number of values in the linked list.

while inner class Node had these fields:

private Node prev; // Previous node on list (null if this is first node)\\
private E val; // The value of this element\\

private Node next; // Next node on list. (null if this is last node)

Change the class invariants above so that the doubly linked list is a circular doubly linked list.

4 of 10

Name:

NetID:

3.

(a) 8 points. What-input-is-needed-to-get-output.

Exception handling (11 Points)

Using the class and procedure below,

answer the questions to the right, providing an appropriate procedure call as needed. Write “none”
if no procedure call will give the desired output.

public class R {

by

(b) 3 points. Executing a try-statement.

}

public static void b(int k, String s) {

int x= 0;
int y= 0;
try {

System.out.println("A");
y= s.length();
System.out.println("B");
x=k /y;
System.out.println("C");
} catch(NullPointerException npe) {
System.out.println("D");
x=k / (k-1);
System.out.println("E");
} catch(RuntimeException re) {
System.out.println("F");
try {
int z= k / (y-2);
System.out.println("G");
} catch(RuntimeException r) {
System.out.println("H");
}

System.out.println("I");
int z= k / (k-5);
System.out.println("J");

2 points per option (all-or-nothing)
Give one call of procedure b that will
print the following:

o H O e

What call on b does not print "J"?

What call on b prints this:

O H QW >

What call on b will result in a thrown
exception?

Write the algorithm (in English) for executing the

following try-catch block, which is not within another try-block.

try { S1 } catch (RuntimeException re) { S2 } .

5 of 10

Name: NetID:

4. Recursion (14 Points)

(a) 6 points
Execute the three calls griesSeq(1); griesSeq(5); and griesSeq(8); and write the return value of
the calls in the places provided below.

public static int griesSeq(int n) {
if (n==0 || n ==1) return 1;
if (n%2==0) {
return griesSeq(n - 1);
}
return n * griesSeq(n - 1);

}

Return value for griesSeq(1):
Return value for griesSeq(5):
Return value for griesSeq(8):

(b) 8 points Consider the following class representing Elephants. Write the body of recursive
procedure numNames. You must use recursion; do not use a loop!

public class Elephant {
private String name; // not null
private Elephant child; // null if this Elephant has no child

/** Constructor: an instance with name n and child c.
* Precondition: n is not null. */
public Elephant(String n, Elephant c) {
name= n,
child= c;

/** Return the number of Elephants in this Elephant's family that have
* name n. This Elephant's family consists of this Elephant, its child,
* its child's child, its child's child's child, etc. */

public int numNames(String n) {

6 of 10

Name: NetID:

5. Object-Oriented Programming (30 points)

Below is class Course, which you will be using throughout this problem:

public class Course {
public int number;
public String name;

/** Constructor: Course with number num and name n. */
public Course(int num, String n) {
number= num; name= n;
}
}

(a) 4 points Complete the body of the constructor in class Student:

public class Student {
private int studentID;
private double gpa;
private String name;

/** Constructor: Student with name n, student ID id, and gpa gpa. */
public Student(String n, int id, double gpa) {

/** Return true if this student has a gpa > 2.0. x/
public boolean inGoodStanding() {
return gpa > 2.0;
}
}

(b) 10 points Complete the body of the constructor and function inGoodStanding in class

EnrolledStudent on the next page.

7 of 10

Name: NetID:

/** A Student who is currently enrolled in an institute. */

public class EnrolledStudent extends Student {
private int maxC; // Max number of courses to take at one time.
private Course[] schedule; // Student is taking courses
private int numC; // schedule[0..numC-1]

/** Constructor: Newly enrolled Student taking O courses, with
* name n, student ID id, gpa gpa. Can take at most max

* courses at one time. */
public EnrolledStudent(String n, int id, double gpa, int max) {

/** Return true if this student has a gpa > 2.0 and is taking
* at least 3 courses. */
public @Override boolean inGoodStanding() {

(c) 16 points Below is a declaration of interface Enrolled. Above, do whatever is necessary in
class EnrolledStudent to have it implement Enrolled.

public interface Enrolled {
/** If student is taking the max number of courses allowed, return false.
* Otherwise, add c to the student's schedule and return true. */
public boolean addCourse(Course c);

/** Return the enrolled student's schedule. */
public Course[] getSchedule();
}

8 of 10

Name: NetID:

6. Loop Invariants (14 points)

Consider class Person below, which has two methods isRoyal() and isGuard() to determine
whether a Person is a member of the British Royal Family or the British Guard, respectively. You
will use the four loopy questions to develop a single loop (with initialization) that modifies an array
¢ to surround the Royal Family with British Guards.

class Person {
private boolean guard;
public Person (boolean g) { guard= g; }
public boolean isGuard() { return guard; }
public boolean isRoyal() { return !guard; }

}
(a) 6 points Consider this precondition and postcondition for an array ¢ of Person objects.
0 n
Precondition: c ?
0 h k n
Postcondition: c isGuard () isRoyal() isGuard ()

Sizes of c[0..h] and c[k+1..n] differ by at most 1

Complete the invariant below to generalize the above array diagrams. You will have to intro-
duce a new variable. Place your variables carefully; ambiguous answers will be considered incorrect.
Note: Several different invariants can be drawn; draw any one of them.

0 n

Invariant: c

9 of 10

Name: NetID:

(b) 1 point Below, write the initialization that truthifies the invariant:

(c) 2 points Write a while-loop condition and write something in the loop body that makes
progress toward termination. (Hint: When the loop condition is false, the invariant must imply the
postcondition.)

(d) 5 points Write a loop body that keeps the invariant true. (Hint: use procedure swap(c,i,j)
to swap array elements c[i] and c[j].)

initialization:

while () o

10 of 10

