Announcements

- TODO before next Tuesday:
 - Watch the tutorial on the shortest path algorithm
 - Complete the associated quiz
Graphs
Representing Graphs

Adjacency List

1 → 2 → 4
2 → 3
3
4 → 2 → 3

Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
public interface Graph {

 /** Return the number of nodes in the graph */
 public int numNodes();

 /** Return a list of edges in the graph */
 public List<Pair> getEdges();

 /** Check whether an edge exists */
 public boolean hasEdge(int u, int v);

 /** Return a list of neighbors of n. */
 /** Precondition: 0 \leq n < number of nodes */
 public List<Integer> getNeighbors(int n);

 /** Print the graph. */
 /** Precondition: the graph has < 100 nodes */
 public void printGraph();
}
/** An instance is an ordered pair of integers */
public class Pair {
 public int one; // the ordered pair (one, two)
 public int two;

 /** Constructor: a pair of ints h and k. */
 public Pair(int h, int k) {
 one= h;
 two= k;
 }

 /** A representation (h, k) of this pair. */
 public String toString() {
 return "(" + one + ", " + two + ")";
 }
}
/** An instance is a graph maintained as an adjacency matrix */

public class MatrixGraph implements Graph{
 public boolean[][] matrix; // adjacency matrix
 public int n; // number of nodes
 public int m; // number of edges

 /** A graph with n nodes numbers 0..n-1 and edges given by edges. */
 public MatrixGraph(int numNodes, Pair[] edges) {
 n = numNodes;
 m = edges.length;

 matrix = new boolean[n][n];
 for (Pair p : edges) {
 matrix[p.one][p.two] = true;
 }
 }

 ...
Graph Algorithms

- **Search**
 - Depth-first search
 - Breadth-first search

- **Shortest paths**
 - Dijkstra's algorithm

- **Spanning trees**
 - Algorithms based on properties
 - Minimum spanning trees
 - Prim's algorithm
 - Kruskal's algorithm
Search on Graphs

- Given a graph \((V, E)\) and a vertex \(u \in V\)
- We want to "visit" each node that is reachable from \(u\)

There are many paths to some nodes.

How do we visit all nodes efficiently, without doing extra work?
/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */

class {
 public static void dfs(int u) {
 mark u
 for all edges (u,v):
 if v is unmarked:
 dfs(v);
 }

 dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8
Depth-First Search

/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */

public static void dfs(int u) {
 mark u
 for all edges (u,v):
 if v is unmarked:
 dfs(v);
}

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are \(n \) vertices that are reachable along unvisited paths and \(m \) edges:

- Worst-case running time? \(O(n + m) \)
- Worst-case space? \(O(n) \)
DFS Quiz

- In what order would a DFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.
 - 1, 2, 3, 4, 5, 6, 7, 8
 - 1, 2, 5, 6, 3, 6, 7, 4, 7, 8
 - 1, 2, 5, 6, 3, 7, 4, 8
Depth-First Search in Java

Eclipse!
/** Visit all nodes reachable on unvisited paths from u. */

public static void dfs(int u) {
 Stack s = new Stack;
 s.push(u);
 while (s is not empty) {
 u = s.pop();
 if (u not visited) {
 visit u;
 for each edge (u, v):
 s.push(v);
 }
 }
}
Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the source node.
BFS Quiz

- In what order would a BFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.
 - 1, 2, 3, 4, 5, 6, 7, 8
 - 1, 2, 3, 4, 5, 6, 6, 7, 7, 8
 - 1, 2, 5, 3, 6, 4, 7, 8
 - 1, 2, 5, 6, 3, 7, 4, 8
/** Visit all nodes reachable on unvisited paths from u. */
public static void bfs(int u) {
 Queue q= new Queue
 q.add(u);
 while (q is not empty) {
 u= q.remove();
 if (u not visited) {
 visit u;
 for each (u, v):
 q.add(v);
 }
 }
}
Analyzing BFS

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

```java
/** Visit all nodes reachable on unvisited paths from u. */
public static void bfs(int u) {
    Queue q = new Queue;
    q.add(u);
    while (q is not empty) {
        u = q.remove();
        if (u not visited) {
            visit u;
            for each (u, v):
                q.add(v);
        }
    }
}
```

Suppose there are n vertices that are reachable along unvisited paths and m edges:

Worst-case running time? $O(n + m)$
Worst-case space? $O(m)$
Comparing Search Algorithms

DFS
- Visits: 1, 2, 3, 5, 7, 8
- Time: $O(n + m)$
- Space: $O(n)$

BFS
- Visits: 1, 2, 5, 7, 3, 8
- Time: $O(n + m)$
- Space: $O(m)$