Announcements

- A4 goes out today!
- Prelim 1:
 - regrades are open
 - a few rubrics have changed
- No Recitations next week (Fall Break Mon & Tue)
- We’ll spend Fall Break taking care of loose ends
Abstract vs concrete data structures

- Abstract data structures are **interfaces**
 - specify only **interface** (method names and specs)
 - not **implementation** (method bodies, fields, …)
 - Have multiple possible implementations

- Concrete data structures are **classes**
 - These are the multiple possible implementations
Abstract data structures (the interfaces)

<table>
<thead>
<tr>
<th>Interface</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>an ordered collection (aka sequence)</td>
</tr>
<tr>
<td>Set</td>
<td>collection that contains no duplicate elements</td>
</tr>
<tr>
<td>Map</td>
<td>maps keys to values, no duplicate keys</td>
</tr>
<tr>
<td>Stack</td>
<td>a last-in-first-out (LIFO) stack of objects</td>
</tr>
<tr>
<td>Queue</td>
<td>collection for holding elements prior to processing</td>
</tr>
<tr>
<td>Priority Queue</td>
<td>later this lecture!</td>
</tr>
</tbody>
</table>

These definitions specify an interface for the user. How you implement them is up to you!
Abstract data structures made concrete

<table>
<thead>
<tr>
<th>Interface</th>
<th>Class (implementation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>ArrayList, LinkedList</td>
</tr>
<tr>
<td>Set</td>
<td>HashSet, TreeSet</td>
</tr>
<tr>
<td>Map</td>
<td>HashMap, TreeMap</td>
</tr>
<tr>
<td>Stack</td>
<td>can be done with a LinkedList</td>
</tr>
<tr>
<td>Queue</td>
<td>can be done with a LinkedList</td>
</tr>
</tbody>
</table>
2 classes that both implement List

- **List** is the *interface* ("abstract data type")
 - has methods: add, get, remove, ...

- These **2 classes** implement List ("concrete data types"):

<table>
<thead>
<tr>
<th>Class</th>
<th>ArrayList</th>
<th>LinkedList</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backing storage:</td>
<td>array</td>
<td>chained nodes</td>
</tr>
<tr>
<td>add(i, val)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>add(0, val)</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>add(n, val)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>get(i)</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>get(0)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>get(n)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Priority Queue

Unbounded queue with ordered elements

- data items are Comparable (ties broken arbitrarily)

Priority order: smaller (determined by compareTo()) have higher priority

remove(): remove and return element with highest priority
Many uses of priority queues

- Event-driven simulation: customers in a line
- Collision detection: "next time of contact" for colliding bodies
- Graph searching: Dijkstra's algorithm, Prim's algorithm
- AI Path Planning: A* search
- Statistics: maintain largest M values in a sequence
- Operating systems: load balancing, interrupt handling
- Discrete optimization: bin packing, scheduling
- College: prioritizing assignments for multiple classes.

Surface simplification [Garland and Heckbert 1997]
interface PriorityQueue<E> {
 boolean add(E e); //insert e.
 E poll(); //remove/return min elem.
 E peek() //return min elem.
 void clear() //remove all elems.
 boolean contains(E e);
 boolean remove(E e);
 int size();
 Iterator<E> iterator();
}
Priority queues can be maintained as:

A list
 - `add()` put new element at front – O(1)
 - `poll()` must search the list – O(n)
 - `peek()` must search the list – O(n)

An ordered list
 - `add()` must search the list – O(n)
 - `poll()` min element at front – O(1)
 - `peek()` O(1)

A red-black tree (we’ll cover later!)
 - `add()` must search the tree & rebalance – O(log n)
 - `poll()` must search the tree & rebalance – O(log n)
 - `peek()` O(log n)

Can we do better?
A Heap..

Is a binary tree satisfying 2 properties

1) **Completeness.** Every level of the tree (except last) is completely filled, and on last level nodes are as far left as possible.

Do not confuse with **heap memory**, where a process dynamically allocates space—different usage of the word *heap*.
Completeness Property

Every level (except last) completely filled.
Nodes on bottom level are as far left as possible.
Completeness Property

Not a heap because:

- missing a node on level 2
- bottom level nodes are not as far left as possible
A Heap..

Is a binary tree satisfying 2 properties

1) **Completeness.** Every level of the tree (except last) is completely filled, and on last level nodes are as far left as possible.

2) **Heap Order Invariant.**
 - **Max-Heap:** every element in tree is \leq its parent
 - **Min-Heap:** every element in tree is \geq its parent
Every element is \leq its parent

Note: Bigger elements can be deeper in the tree!
Heap Quiz #1
A Heap..

Is a binary tree satisfying 2 properties

1) **Completeness.** Every level of the tree (except last) is completely filled. All holes in last level are all the way to the right.

2) **Heap Order Invariant.**

 Max-Heap: every element in tree is \leq its parent

Implements 3 key methods:

1) **add(e):** add a new element to the heap
2) **poll():** delete the max element and returns it
3) **peek():** return the max element
1. Put in the new element in a new node (leftmost empty leaf)
Heap: add(e)

Time is $O(\log n)$

1. Put in the new element in a new node (leftmost empty leaf)
2. Bubble new element up while greater than parent
Heap: poll()

1. Save root element in a local variable
1. Save root element in a local variable
2. Assign last value to root, delete last node.
Heap: poll()

1. Save root element in a local variable
2. Assign last value to root, delete last node.
3. While less than a child, switch with bigger child (bubble down)

Time is $O(\log n)$
1. Return root value
public class HeapNode<E> {
 private E value;
 private HeapNode left;
 private HeapNode right;
 ...
}
public class Heap<E> {
 private E[] heap;
 ...
}
Numbering the nodes

Number node starting at root row by row, left to right

Level-order traversal

Children of node k are nodes $2k+1$ and $2k+2$

Parent of node k is node $(k-1)/2$
Storing a heap in an array

- Store node number \(i \) in index \(i \) of array \(b \)
- Children of \(b[k] \) are \(b[2k + 1] \) and \(b[2k + 2] \)
- Parent of \(b[k] \) is \(b[(k-1)/2] \)
add() (assuming there is space)

```java
/** An instance of a heap */
class Heap<E> {
    E[] b = new E[50];  // heap is b[0..n-1]
    int n = 0;          // heap invariant is true

    /** Add e to the heap */
    public void add(E e) {
        b[n] = e;
        n = n + 1;
        bubbleUp(n - 1);  // given on next slide
    }
}
```
add(). Remember, heap is in b[0..n-1]

class Heap<E> {
 /** Bubble element #k up to its position.
 * Pre: heap inv holds except maybe for k */
 private void bubbleUp(int k) {
 int p = (k-1)/2;
 // inv: p is parent of k and every elmnt
 // except perhaps k is <= its parent
 while (k > 0 && b[k].compareTo(b[p]) > 0) {
 swap(b[k], b[p]);
 k = p;
 p = (k-1)/2;
 }
 }
}
/** Remove and return the largest element
 * (return null if list is empty) */
public E poll() {
 if (n == 0) return null;
 E v = b[0]; // largest value at root.
 n = n - 1; // move last
 b[0] = b[n]; // element to root
 bubbleDown(0);
 return v;
}
/** Tree has n node.
 * Return index of bigger child of node k
 (2k+2 if k >= n) */
public int biggerChild(int k, int n) {
 int c = 2*k + 2; // k’s right child
 if (c >= n || b[c-1] > b[c])
 c = c-1;
 return c;
}
/** Bubble root down to its heap position.
 Pre: b[0..n-1] is a heap except maybe b[0] */
private void bubbleDown() {
 int k = 0;
 int c = biggerChild(k, n);
 // inv: b[0..n-1] is a heap except maybe b[k] AND
 // b[c] is b[k]'s biggest child
 while (c < n && b[k] < b[c]) {
 swap(b[k], b[c]);
 k = c;
 c = biggerChild(k, n);
 }
}

poll()
peek(). Remember, heap is in b[0..n-1]

```java
/** Return largest element
 * (return null if list is empty) */

class Heap {
    // private data
    E[] b = new E[10];
    int n = 0;

    // methods
    public E poll() {
        if (n == 0) return null;
        return b[0];   // largest value at root.
    }
}
```
Heap Quiz #2
HeapSort

Goal: sort this array in place
HeapSort

// Make b[0..n-1] into a max-heap (in place)
HeapSort

// Make b[0..n-1] into a max-heap (in place)
// inv: b[0..k] is a heap, b[0..k] <= b[k+1..], b[k+1..] is sorted
for (k= n-1; k > 0; k= k-1) {
 b[k]= poll – i.e., take max element out of heap.
}
// Make b[0..n-1] into a max-heap (in place)
// inv: b[0..k] is a heap, b[0..k] <= b[k+1..], b[k+1..] is sorted
for (k= n-1; k > 0; k= k-1) {
 b[k]= poll – i.e., take max element out of heap.
}
Priority queues as heaps

• A *heap* can be used to implement priority queues
 • Note: need a min-heap instead of a max-heap
• Gives better complexity than either ordered or unordered list implementation:
 - `add()` : $O(\log n)$ (n is the size of the heap)
 - `poll()` : $O(\log n)$
 - `peek()` : $O(1)$
java.util.PriorityQueue<E>

```java
interface PriorityQueue<E> {
    boolean add(E e); // insert e.
    void clear(); // remove all elems.
    E peek(); // return min elem.
    E poll(); // remove/return min elem.
    boolean contains(E e);
    boolean remove(E e);
    int size();
    Iterator<E> iterator();
}
```

*IF implemented with a heap!
What if priority is independent from the value?

Separate priority from value and do this:

```cpp
add(e, p); //add element e with priority p (a double)
```

THIS IS EASY!

Be able to change priority

```cpp
change(e, p); //change priority of e to p
```

THIS IS HARD!

Big question: How do we find e in the heap?
Searching heap takes time proportional to its size! No good!
Once found, change priority and bubble up or down. OKAY

Assignment A4: implement this heap! Use a second data structure to make change-priority expected log n time