Prelim Updates

- Regrades are live until next Thursday @ 11:59PM
- A few rubric changes are happening
  - Recursion question: -0pts if you continued to print
  - Exception handling “write the output of execution of that statement” – rubrics change in place
There are different ways of storing data, called **data structures**

Each data structure has operations that it is good at and operations that it is bad at

For any application, you want to choose a data structure that is good at the things you do often
Example Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add(val v)</th>
<th>get(int i)</th>
<th>contains(val v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>![Array Diagram](2 1 3 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linked List</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>![Linked List Diagram](2 → 1 → 3 → 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

add(v): append v to this list  
get(i): return element at position i in this list  
contains(v): return true if this list contains v  

AKA add, lookup, search
Singly linked list:

Today: trees!
Tree: data structure with nodes, similar to linked list

- Each node may have zero or more successors (children)
- Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root

A tree or not a tree?

- A tree
- Not a tree
- A tree
- Not a tree
Tree Terminology (1)

the root of the tree
(no parents)

child of M

the leaves of the tree
(no children)
Tree Terminology (2)

ancestors of B

descendants of W
Tree Terminology (3)

subtree of $M$
A node’s **depth** is the length of the path to the root.
A tree’s (or subtree’s) **height** is the length of the longest path from the root to a leaf.
Multiple trees: a forest

```
Tree Terminology (5)

Multiple trees: a forest

G
  D  J
    B  H

W
  P
    N  S
```
Class for general tree nodes

class GTreeNode<T> {
    private T value;
    private List<GTreeNode<T>> children;
    //appropriate constructors, getters, setters, etc.
}

<T> means user picks a type when they create one (later lecture)

Parent contains a list of its children
Class for general tree nodes

class GTreeNode<T> {
    private T value;
    private List<GTreeNode<T>> children;
    //appropriate constructors, getters, setters, etc.
}

Java.util.List is an interface!
It defines the methods that all implementations must implement.
Whoever writes this class gets to decide what implementation to use — ArrayList? LinkedList? Etc.?
A binary tree is a particularly important kind of tree in which every node has at most two children.

In a binary tree, the two children are called the left and right children.
Binary trees were in A1!

You have seen a binary tree in A1.
A PhD object has one or two advisors.
(Note: the advisors are the “children”.)
Useful facts about binary trees

Max # of nodes at depth d: $2^d$

If height of tree is h:
   - min # of nodes: $h + 1$
   - max # of nodes:
     $$2^0 + ... + 2^h = 2^{h+1} - 1$$

Complete binary tree
   Every level, except last, is completely filled, nodes on bottom level as far left as possible. No holes.
class TreeNode<T> {
    private T datum;
    private TreeNode<T> left, right;

    /** Constructor: one-node tree with datum d */
    public TreeNode(T d) {
        datum = d; left = null; right = null;
    }

    /** Constructor: Tree with root datum d, left tree l, right tree r */
    public TreeNode(T d, TreeNode<T> l, TreeNode<T> r) {
        datum = d; left = l; right = r;
    }

    // more methods: getValue, setValue, getLeft, setLeft, etc.
}

Either might be null if the subtree is empty.
Binary versus general tree

In a binary tree, each node has up to two pointers: to the left subtree and to the right subtree:

- One or both could be null, meaning the subtree is empty
  (remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes (and they need not be ordered):

- Very useful in some situations ...
- ... one of which may be in an assignment!
A binary tree is either null or an object consisting of a value, a left binary tree, and a right binary tree.
Looking at trees recursively

Binary Tree

Left subtree, which is also a binary tree

Right subtree (also a binary tree)
Looking at trees recursively

a binary tree
Looking at trees recursively

- value
- left subtree
- right subtree
Looking at trees recursively
A Recipe for Recursive Functions

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.
A Recipe for Recursive Functions on Binary Trees

Base case: an empty tree (null), or possibly a leaf
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s), each subtree
Use the recursive result to build a solution for the full input.
Searching in a Binary Tree

```java
/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {
    if (t == null) return false;
    if (x.equals(t.datum)) return true;
    return treeSearch(x, t.left) || treeSearch(x, t.right);
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively

We sometimes talk of the root of the tree, t. But we also use t to denote the whole tree.
## Comparing Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add(val v)</th>
<th>get(int i)</th>
<th>contains(val v)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Array</strong></td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td><img src="image" alt="Array Diagram" /></td>
</tr>
<tr>
<td><strong>Linked List</strong></td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td><img src="image" alt="Linked List Diagram" /></td>
</tr>
<tr>
<td><strong>Binary Tree</strong></td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td><img src="image" alt="Binary Tree Diagram" /></td>
</tr>
</tbody>
</table>

Index set by pre-determined traversal order (see slide 36); have to go through the whole tree (no short cut like array indexing).

Node you seek could be anywhere in the tree; have to search the whole thing.
A binary search tree is a binary tree that is ordered and has no duplicate values. In other words, for every node:

- All nodes in the left subtree have values that are less than the value in that node, and
- All values in the right subtree are greater.

A BST is the key to making search way faster.
Building a BST

To insert a new item:

- Pretend to look for the item
- Put the new node in the place where you fall off the tree
Building a BST

insert: January

Note: Inserting them chronologically, (January, then February...) but the BST places them alphabetically (Feb comes before Jan, etc.)
Building a BST

insert: February

january
Building a BST

insert: March

- January
  - February
    - March
Building a BST

insert: April

```
january
/   
/    
february march
```

Building a BST

January

February

March

April

August

July

December

May

June

October

November

September
Printing contents of BST

```java
/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
    if (t == null) return;
    print(t.left);
    System.out.print(t.value);
    print(t.right);
}
```

Because of ordering rules for BST, easy to print alphabetically

- Recursively print left subtree
- Print the root
- Recursively print right subtree
Tree traversals

“Walking” over the whole tree is a tree traversal

- Done often enough that there are standard names

Previous example: in-order traversal

- Process left subtree
- Process root
- Process right subtree

Note: Can do other processing besides printing

Other standard kinds of traversals

- preorder traversal
  - Process root
  - Process left subtree
  - Process right subtree

- post-order traversal
  - Process left subtree
  - Process right subtree
  - Process root

- level-order traversal
  - Not recursive: uses a queue (we’ll cover this later)
Binary Search Tree (BST)

boolean searchBST(n, v):
    if n == null, return false
    if n.v == v, return true
    if v < n.v
        return searchBST(n.left, v)
    else
        return searchBST(n.right, v)

boolean searchBT(n, v):
    if n == null, return false
    if n.v == v, return true
    return searchBT(n.left, v) || searchBT(n.right, v)

Compare binary tree to binary search tree:

2 recursive calls

1 recursive call
# Comparing Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>add(val x)</th>
<th>get(int i)</th>
<th>contains(val x)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Array</strong></td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td><img src="image" alt="Array Diagram" /></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Linked List</strong></td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td><img src="image" alt="Linked List Diagram" /></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Binary Tree</strong></td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td><img src="image" alt="Binary Tree Diagram" /></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>BST</strong></td>
<td>$O(\text{depth})$</td>
<td>$O(\text{depth})$</td>
<td>$O(\text{depth})$</td>
</tr>
<tr>
<td><img src="image" alt="BST Diagram" /></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inserting in Alphabetical Order

april
Inserting in Alphabetical Order

\[
\text{april} \rightarrow \text{august}
\]
Inserting in Alphabetical Order

- April
- August
- December
- February
- January
A balanced binary tree is one where the two subtrees of any node are about the same size.

Searching a binary search tree takes $O(h)$ time, where $h$ is the height of the tree.

In a balanced binary search tree, this is $O(\log n)$.

But if you insert data in sorted order, the tree becomes imbalanced, so searching is $O(n)$. 
Things to think about

What if we want to delete data from a BST?

A BST works great as long as it’s balanced.

There are kinds of trees that can automatically keep themselves balanced as things are inserted!