“Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better.”

- Edsger Dijkstra
Prelim Thursday evening

Sorry about the Sunday review session mixup.

This week’s recitation: review for prelim. Slides are posted on the pinned Piazza note Recitations/Homeworks.

You now know what time time you will take it. We will announce rooms later, on Thursday.

It has been a nightmare for our admin, Jenna.

Bring your Cornell ID card. We will scan them as you enter the room.

Those taking course for AUDIT don’t take the prelim
What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?
- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?
Basic Step: one “constant time” operation

Constant time operation: its time doesn’t depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:
- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)
Counting Steps

// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k + 1) {
 sum = sum + k;
}

All basic steps take time 1.
There are n loop iterations.
Therefore, takes time proportional to n.

Statement:
sum = 0;
k = 1;
k <= n
k = k + 1;
sum = sum + k;

Total steps: 3n + 3

Linear algorithm in n
// Store n copies of 'c' in s
s = "";

// inv: s contains k-1 copies of 'c'
for (int k = 1; k <= n; k = k + 1) {
 s = s + 'c';
}

Catenation is not a basic step. For each k, catenation creates and fills k array elements.

<table>
<thead>
<tr>
<th>Statement:</th>
<th># times done</th>
</tr>
</thead>
<tbody>
<tr>
<td>s = "";</td>
<td>1</td>
</tr>
<tr>
<td>k = 1;</td>
<td>1</td>
</tr>
<tr>
<td>k <= n</td>
<td>n+1</td>
</tr>
<tr>
<td>k = k+1;</td>
<td>n</td>
</tr>
<tr>
<td>s = s + 'c';</td>
<td>n</td>
</tr>
</tbody>
</table>

Total steps: 3n + 3
String Catenation

\[s = s + "c"; \] is NOT constant time. It takes time proportional to 1 + length of \(s \).
// Store n copies of ‘c’ in s
s = "";

// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1){
 s = s + 'c';
}

Catenation is not a basic step. For each k, catenation creates and fills k array elements.

Statement:

<table>
<thead>
<tr>
<th></th>
<th># times</th>
<th># steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>s = "";</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k = 1;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k <= n</td>
<td>n+1</td>
<td>1</td>
</tr>
<tr>
<td>k = k+1;</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>s = s + 'c';</td>
<td>n</td>
<td>k</td>
</tr>
</tbody>
</table>

Total steps: \(n(n-1)/2 + 2n + 3 \)

Quadratic algorithm in n
Linear versus quadratic

// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k+1)
 sum = sum + n

// Store n copies of ‘c’ in s
s = “”;
// inv: s contains k-1 copies of ‘c’
for (int k = 1; k = n; k = k+1)
 s = s + ‘c’;

Linear algorithm

Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What’s important is that

One is linear in n — takes time proportional to n
One is quadratic in n — takes time proportional to n^2
Looking at execution speed

- Constant time: \(n \) ops
- \(n + 2 \) ops
- \(2n + 2 \) ops
- \(n^2 \) ops

2\(n + 2 \), \(n + 2 \), \(n \) are all linear in \(n \), proportional to \(n \)
What do we want from a definition of “runtime complexity”?

1. Distinguish among cases for large n, not small n

2. Distinguish among important cases, like
 - n^2 basic operations
 - n basic operations
 - $\log n$ basic operations
 - 5 basic operations

3. Don’t distinguish among trivially different cases.
 - 5 or 50 operations
 - n, $n+2$, or $4n$ operations
"Big O" Notation

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $N \geq 0$ such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

Intuitively, $f(n)$ is $O(g(n))$ means that $f(n)$ grows like $g(n)$ or slower

Get out far enough (for $n \geq N$) $f(n)$ is at most $c \cdot g(n)$
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

Methodology:

Start with \(f(n)\) and slowly transform into \(c \cdot g(n)\):

- Use \(=\) and \(<=\) and \(<\) steps
- At appropriate point, can choose \(N\) to help calculation
- At appropriate point, can choose \(c\) to help calculation
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

\[
\begin{align*}
 f(n) &= \text{<definition of } f(n)> \\
 &= 2n^2 + n \\
 &\leq \text{<for } n \geq 1, \ n \leq n^2> \\
 &= 2n^2 + n^2 \\
 &= \text{<arith>} \\
 &= 3n^2 \\
 &= \text{<definition of } g(n) = n^2> \\
 &= 3\cdot g(n)
\end{align*}
\]

Transform \(f(n)\) into \(c \cdot g(n)\):
- Use =, \(<=\), < steps
- Choose \(N\) to help calc.
- Choose \(c\) to help calc

Choose \(N = 1\) and \(c = 3\)
Prove that $100 \, n + \log n$ is $O(n)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $N \geq 0$ such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

$$f(n) = \begin{cases} \text{<put in what } f(n) \text{ is>} \end{cases}$$

$$100 \, n + \log n \leq \begin{cases} \text{<We know } \log n \leq n \text{ for } n \geq 1> \end{cases}$$

$$100 \, n + n = \begin{cases} \text{<arith>} \end{cases}$$

Choose $N = 1$ and $c = 101$

$$101 \, n = \begin{cases} \text{<g(n) = n>} \end{cases}$$

$$101 \, g(n)$$
Let $f(n) = 3n^2 + 6n - 7$

- $f(n)$ is $O(n^2)$
- $f(n)$ is $O(n^3)$
- $f(n)$ is $O(n^4)$
- \ldots

$p(n) = 4n \log n + 34n - 89$

- $p(n)$ is $O(n \log n)$
- $p(n)$ is $O(n^2)$

$h(n) = 20 \cdot 2^n + 40n$

- $h(n)$ is $O(2^n)$

$a(n) = 34$

- $a(n)$ is $O(1)$

Only the leading term (the term that grows most rapidly) matters

If it’s $O(n^2)$, it’s also $O(n^3)$ etc! However, we always use the smallest one
Do NOT say or write $f(n) = O(g(n))$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $N \geq 0$ such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

$f(n) = O(g(n))$ is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use = this way.

We know that $n+2$ is $O(n)$ and $n+3$ is $O(n)$. Suppose we use =

\[
\begin{align*}
 n+2 &= O(n) \\
 n+3 &= O(n)
\end{align*}
\]

But then, by transitivity of equality, we have $n+2 = n+3$. We have proved something that is false. Not good.
Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th>operations</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>n log n</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>3n^2</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>(O(1))</th>
<th>constant</th>
<th>excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(\log n))</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>(O(n))</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>(O(n \log n))</td>
<td>(n \log n)</td>
<td>pretty good</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>quadratic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>(O(n^3))</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>(O(2^n))</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>
Search for v in $b[0..]$

Q: v is in array b
Store in i the index of the first occurrence of v in b:
R: v is not in $b[0..i-1]$ and $b[i] = v$.

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
Search for v in b[0..]

Q: v is in array b

Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
The Four Loopy Questions

- Does it start right?
 Is $\{Q\} \text{ init } \{P\}$ true?

- Does it continue right?
 Is $\{P \&\& B\} \text{ S } \{P\}$ true?

- Does it end right?
 Is $P \&\& !B \implies R$ true?

- Will it get to the end?
 Does it make progress toward termination?
Search for \(v \) in \(b[0..] \)

Q: \(v \) is in array \(b \)

Store in \(i \) the index of the first occurrence of \(v \) in \(b \):

R: \(v \) is not in \(b[0..i-1] \) and \(b[i] = v \).

```java
i = 0;
while (b[i] != v) {
    i = i + 1;
}
return i;
```

Each iteration takes constant time.

Worst case: \(b.length \) iterations

Linear algorithm: \(O(b.length) \)
Binary search for v in sorted b[0..]

// b is sorted. Store in i a value to truthify R:
// b[0..i] <= v < b[i+1..]

<table>
<thead>
<tr>
<th>pre: b</th>
<th>sorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>post: b</td>
<td>\leq v</td>
</tr>
<tr>
<td>inv: b</td>
<td>\leq v</td>
</tr>
</tbody>
</table>

b is sorted. We know that. To avoid clutter, don’t write in it invariant

Methodology:

1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
Binary search for v in sorted $b[0..]$

// b is sorted. Store in i a value to truthify R:
// $b[0..i]$ <= v < $b[i+1..]$

```java
//         $b[0..i]$ <= $v$ < $b[i+1..]$

i = -1;
k = b.length;

while (i + 1 < k) {
    int e = (i + k) / 2;
    // -1 <= i < e < k <= b.length
    if (b[e] <= v) i = e;
    else k = e;
}
```

pre: b sorted
post: b $\leq v$ $>$ v
inv: b $\leq v$ $<$ v

<table>
<thead>
<tr>
<th>0</th>
<th>i</th>
<th>k</th>
<th>b.length</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq v$</td>
<td>$\leq v$</td>
<td>$>$ v</td>
<td></td>
</tr>
</tbody>
</table>
Binary search for v in sorted $b[0..]$

// b is sorted. Store in i a value to truthify R:
// $b[0..i] \leq v < b[i+1..]$

```java
i = -1;
k = b.length;
while (i+1 < k) {
    int e = (i+k)/2;
    // -1 $\leq$ e $<$ k $\leq$ b.length
    if (b[e] $\leq$ v) i = e;
    else k = e;
}
```

Each iteration takes constant time.

Logarithmic: $O(\log(b.length))$

Worst case: $\log(b.length)$ iterations
Binary search for v in sorted b[0..]

```java
// b is sorted. Store in i a value to truthify R:
//   b[0..i] <= v < b[i+1..]

i = -1;
k = b.length;
while (i + 1 < k) {
    int e = (i + k) / 2;
    // -1 <= e < k <= b.length
    if (b[e] <= v) i = e;
    else k = e;
}
```

Each iteration takes constant time.

This algorithm is better than binary searches that stop when v is found.
1. Gives good info when v not in b.
2. Works when b is empty.
3. Finds first occurrence of v, not arbitrary one.
4. Correctness, including making progress, easily seen using invariant

Logarithmic: $O(\log(b.length))$

Worst case: $\log(b.length)$ iterations
Dutch National Flag Algorithm
Dutch National Flag Algorithm

Dutch national flag. Swap b[0..n-1] to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of b[0..n-1] to make postcondition R:

```
Q: b[0..n] = [reds, ?]  
R: b[0..n] = [reds, whites, blues]
```

Suppose we use invariant P1.

What does the repetend do?

2 swaps to get a red in place
Dutch National Flag Algorithm

Dutch national flag. Swap \(b[0..n-1]\) to put the reds first, then the whites, then the blues. That is, given precondition \(Q\), swap values of \(b[0..n-1]\) to truthify postcondition \(R\):

\[
\begin{array}{cccc}
0 & & & n \\
Q: b & ? & & \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & & & n \\
R: b & \text{reds} & \text{whites} & \text{blues} \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & & & n \\
P1: b & \text{reds} & \text{whites} & \text{blues} & ? \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & & & n \\
P2: b & \text{reds} & \text{whites} & ? & \text{blues} \\
\end{array}
\]

Suppose we use invariant \(P2\).

What does the repetend do?

At most one swap per iteration

Compare algorithms without writing code!
Dutch National Flag Algorithm: invariant P1

```
h = 0; k = h; p = k;
while (p != n) {
    if (b[p] blue) p = p+1;
    else if (b[p] white) {
        swap b[p], b[k];
        p = p+1; k = k+1;
    }
    else { // b[p] red
        swap b[p], b[h];
        swap b[p], b[k];
        p = p+1; h = h+1; k = k+1;
    }
}
```
Dutch National Flag Algorithm: invariant P2

Q: b

R: b

P2: b

h = 0; k = h; p = n;
while (k != p) {
 if (b[k] white) k = k + 1;
 else if (b[k] blue) {
 p = p - 1;
 swap b[k], b[p];
 }
 else { // b[k] is red
 swap b[k], b[h];
 h = h + 1; k = k + 1;
 }
}
Asymptotically, which algorithm is faster?

<table>
<thead>
<tr>
<th>Invariant 1</th>
<th>Invariant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>h</td>
</tr>
<tr>
<td>reds</td>
<td>whites</td>
</tr>
</tbody>
</table>

h = 0; k = h; p = k;
while (p != n) {
 if (b[p] blue)
 p = p + 1;
 else if (b[p] white) {
 swap b[p], b[k];
 p = p + 1; k = k + 1;
 }
 else { // b[p] red
 swap b[p], b[h];
 swap b[p], b[k];
 p = p + 1; h = h + 1; k = k + 1;
 }
}

h = 0; k = h; p = n;
while (k != p) {
 if (b[k] white)
 k = k + 1;
 else if (b[k] blue) {
 p = p - 1;
 swap b[k], b[p];
 }
 else { // b[k] is red
 swap b[k], b[h];
 h = h + 1; k = k + 1;
 }
}
Asymptotically, which algorithm is faster?

Invariant 1

<table>
<thead>
<tr>
<th>0</th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td>whites</td>
<td>blues</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

might use 2 swaps per iteration

```java
if (b[p] blue) p = p+1;
else if (b[p] white) {
    swap b[p], b[k];
    p = p+1; k = k+1;
}
```

swap b[p], b[h];
swap b[p], b[k];
p = p+1; h = h+1; k = k+1;

Invariant 2

<table>
<thead>
<tr>
<th>0</th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td>whites</td>
<td>?</td>
<td>blues</td>
<td></td>
</tr>
</tbody>
</table>

uses at most 1 swap per iteration

```java
if (b[k] white) k = k+1;
else if (b[k] blue) {
    p = p-1;
}
```

```java
swap b[k], b[h];
h = h+1; k = k+1;
```

These two algorithms have the same asymptotic running time (both are $O(n)$)