“Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better.”

- Edsger Dijkstra
Prelim Thursday evening

Sorry about the Sunday review session mixup.

This week’s recitation: review for prelim. Slides are posted on the pinned Piazza note Recitations/Homeworks.

You now know what time time you will take it.
We will announce rooms later, on Thursday.

It has been a nightmare for our admin, Jenna.

Bring your Cornell ID card.
We will scan them as you enter the room.

Those taking course for AUDIT don’t take the prelim
What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?
- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?
Basic Step: one “constant time” operation

Constant time operation: its time doesn’t depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:
- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)
Counting Steps

// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k + 1) {
 sum = sum + k;
}

All basic steps take time 1. There are n loop iterations. Therefore, takes time proportional to n.

Statement: # times done
sum = 0; 1
k = 1; 1
k <= n n+1
k = k + 1; n
sum = sum + k; n
Total steps: 3n + 3

Linear algorithm in n
// Store n copies of ‘c’ in s
s = "";

// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1){
 s = s + 'c';
}

Catenation is not a basic step. For each k, catenation creates and fills k array elements.
s = s + “c”; is NOT constant time. It takes time proportional to 1 + length of s.
Not all operations are basic steps

// Store n copies of ‘c’ in s
s = "";

// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1) {
 s = s + 'c';
}

Catenation is not a basic step. For each k, catenation creates and fills k array elements.

<table>
<thead>
<tr>
<th>Statement</th>
<th># times</th>
<th># steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>s = "";</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k = 1;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k <= n</td>
<td>n+1</td>
<td>1</td>
</tr>
<tr>
<td>k = k+1;</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>s = s + 'c';</td>
<td>n</td>
<td>k</td>
</tr>
</tbody>
</table>

Total steps: \(n \times (n-1)/2 + 2n + 3 \)

Quadratic algorithm in n
Linear versus quadratic

// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k+1)
sum = sum + n

Linear algorithm

// Store n copies of ‘c’ in s
s = “”;
// inv: s contains k-1 copies of ‘c’
for (int k = 1; k = n; k = k+1)
s = s + ‘c’;

Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What’s important is that

One is linear in n — takes time proportional to n
One is quadratic in n — takes time proportional to n^2
Looking at execution speed

Number of operations executed

size n of the array

Constant time

2n+2, n+2, n are all linear in n, proportional to n

2n + 2 ops
n + 2 ops
n ops

n*n ops

What do we want from a definition of “runtime complexity”?

1. Distinguish among cases for large n, not small n

2. Distinguish among important cases, like
 - n^2 basic operations
 - n basic operations
 - $\log n$ basic operations
 - 5 basic operations

3. Don’t distinguish among trivially different cases.
 - 5 or 50 operations
 - n, $n+2$, or $4n$ operations
"Big O" Notation

Formal definition: \(f(n) \) is \(\mathcal{O}(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

Get out far enough (for \(n \geq N \))
\(f(n) \) is at most \(c \cdot g(n) \)

Intuitively, \(f(n) \) is \(\mathcal{O}(g(n)) \) means that \(f(n) \) grows like \(g(n) \) or slower
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

Methodology:

Start with \(f(n)\) and slowly transform into \(c \cdot g(n)\):

- Use \(\mathbf{=}\) and \(\leq\) and \(<\) steps
- At appropriate point, can choose \(N\) to help calculation
- At appropriate point, can choose \(c\) to help calculation
Prove that \((2n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\),
\[f(n) \leq c \cdot g(n) \]

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

\[
\begin{align*}
\text{f(n)} & = \text{<definition of f(n)>} \\
& = 2n^2 + n \\
& \leq \text{<for n \geq 1, n \leq n^2>} \\
& = 2n^2 + n^2 \\
& = \text{<arith>} \\
& = 3n^2 \\
& = \text{<definition of g(n) = n^2>} \\
& = 3 \cdot g(n)
\end{align*}
\]

Transform \(f(n)\) into \(c \cdot g(n)\):
- Use =, \(\leq\), < steps
- Choose \(N\) to help calc.
- Choose \(c\) to help calc

Choose \(N = 1\) and \(c = 3\)
Prove that $100n + \log n$ is $O(n)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $N \geq 0$ such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

$$f(n) = \text{<put in what } f(n) \text{ is>}$$

$$100n + \log n \leq \text{<We know } \log n \leq n \text{ for } n \geq 1>$$

$$100n + n \leq \text{<arith>}$$

Choose $N = 1$ and $c = 101$
O(...) Examples

Let $f(n) = 3n^2 + 6n - 7$

- $f(n)$ is $O(n^2)$
- $f(n)$ is $O(n^3)$
- $f(n)$ is $O(n^4)$
- ...

$p(n) = 4n \log n + 34n - 89$

- $p(n)$ is $O(n \log n)$
- $p(n)$ is $O(n^2)$

$h(n) = 20 \cdot 2^n + 40n$

- $h(n)$ is $O(2^n)$

$a(n) = 34$

- $a(n)$ is $O(1)$

Only the leading term (the term that grows most rapidly) matters

If it’s $O(n^2)$, it’s also $O(n^3)$ etc! However, we always use the smallest one
Do NOT say or write \(f(n) = O(g(n)) \)

Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

\(f(n) = O(g(n)) \) is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use = this way.

We know that \(n+2 \) is \(O(n) \) and \(n+3 \) is \(O(n) \). Suppose we use =

\[
\begin{align*}
n+2 &= O(n) \\
n+3 &= O(n)
\end{align*}
\]

But then, by transitivity of equality, we have \(n+2 = n+3 \).
We have proved something that is false. Not good.
Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th>operations</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>n \log n</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>3n^2</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>constant</td>
<td>excellent</td>
<td></td>
</tr>
<tr>
<td>O(log n)</td>
<td>logarithmic</td>
<td>excellent</td>
<td></td>
</tr>
<tr>
<td>O(n)</td>
<td>linear</td>
<td>good</td>
<td></td>
</tr>
<tr>
<td>O(n log n)</td>
<td>n log n</td>
<td>pretty good</td>
<td></td>
</tr>
<tr>
<td>O(n^2)</td>
<td>quadratic</td>
<td>maybe OK</td>
<td></td>
</tr>
<tr>
<td>O(n^3)</td>
<td>cubic</td>
<td>maybe OK</td>
<td></td>
</tr>
<tr>
<td>O(2^n)</td>
<td>exponential</td>
<td>too slow</td>
<td></td>
</tr>
</tbody>
</table>
Consider two different data structures that could store your data: an array or a doubly-linked list. In both cases, let n be the size of your data structure (i.e., the number of elements it is currently storing). What is the running time of each of the following operations:

- get(i) using an array
- get(i) using a DLL
- insert(v) using an array
- insert(v) using a DLL
Java Lists

- `java.util` defines an interface `List<E>`
- implemented by multiple classes:
 - `ArrayList`
 - `LinkedList`
Search for v in b[0..]

Q: v is in array b
Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

 Practice doing this!
Search for \(v \) in \(b[0..] \)

Q: \(v \) is in array \(b \)

Store in \(i \) the index of the first occurrence of \(v \) in \(b \):

R: \(v \) is not in \(b[0..i-1] \) and \(b[i] = v \).

Methodology:

1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
The Four Loopy Questions

- Does it start right?
 \[\{Q\} \text{ init } \{P\} \] true?

- Does it continue right?
 \[\{P \&\& B\} \text{ S } \{P\} \] true?

- Does it end right?
 \[P \&\& !B \Rightarrow R \] true?

- Will it get to the end?
 Does it make progress toward termination?
Search for v in b[0..]

Q: v is in array b
Store in i the index of the first occurrence of v in b:
R: v is not in b[0..i-1] and b[i] = v.

Each iteration takes constant time.
Worst case: b.length iterations
Binary search for v in sorted b[0..]

// b is sorted. Store in i a value to truthify R:
// b[0..i] <= v < b[i+1..]

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!

pre: b sorted
post: b \leq v \quad > v
inv: b \leq v \quad ? \quad > v

b is sorted. We know that. To avoid clutter, don’t write in it invariant
Binary search for v in sorted b[0..]

// b is sorted. Store in i a value to truthify R:
// b[0..i] <= v < b[i+1..]

```java
int i = -1;
int k = b.length;
while (i+1 < k) {
    int e = (i+k)/2;
    // -1 ≤ i < e < k ≤ b.length
    if (b[e] <= v) i = e;
    else k = e;
}
```
Binary search for v in sorted $b[0..]$

// b is sorted. Store in i a value to truthify R:
// $b[0..i] \leq v < b[i+1..]$

pre: b sorted

post: $b \leq v \mid > v$

inv: $b \leq v \mid ? \mid > v$

i= -1;
k= b.length;
while (i+1< k) {
 int e=(i+k)/2;
 // -1 \leq e < k \leq b.length
 if (b[e] <= v) i= e;
 else k= e;
}

Each iteration takes constant time.

Worst case: $\log(b.length)$ iterations

Logarithmic: $O(\log(b.length))$
Binary search for \(v \) in sorted \(b[0..] \)

// b is sorted. Store in \(i \) a value to truthify R:

// \(b[0..i] <= v < b[i+1..] \)

This algorithm is better than binary searches that stop when \(v \) is found.

1. Gives good info when \(v \) not in \(b \).
2. Works when \(b \) is empty.
3. Finds first occurrence of \(v \), not arbitrary one.
4. Correctness, including making progress, easily seen using invariant

\[
i = -1; \\
k = b.length; \\
\textbf{while} \ (i+1 < k) \ \{ \\
\quad \text{int } e = (i+k)/2; \\
\quad // -1 \leq e < k \leq b.length \\
\quad \textbf{if} \ (b[e] \leq v) \ \ i = e; \\
\quad \textbf{else} \ k = e; \\
\}\]

Each iteration takes constant time.

\[
\text{Worst case: } \log(b.length) \ \text{iterations}
\]

Logarithmic: \(O(\log(b.length)) \)
Dutch National Flag Algorithm
Dutch National Flag Algorithm

Dutch national flag. Swap b[0..n-1] to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of b[0..n-1] to truthify postcondition R:

\[Q: \begin{array}{c} \text{0} \\ \text{b} \end{array}, \quad \begin{array}{c} \text{n} \\ \text{?} \end{array} \]

\[R: \begin{array}{ccc} \text{reds} & \text{whites} & \text{blues} \\ \text{0} & \text{?} & \text{n} \end{array} \]

Suppose we use invariant P1.

\[P1: \begin{array}{cccc} \text{reds} & \text{whites} & \text{blues} & \text{?} \\ \text{0} & \text{n} & \text{?} \end{array} \]

What does the repetend do?

\[P2: \begin{array}{cccc} \text{reds} & \text{whites} & \text{?} & \text{blues} \\ \text{0} & \text{n} & \text{?} \end{array} \]

2 swaps to get a red in place.
Dutch National Flag Algorithm

Dutch national flag. Swap $b[0..n-1]$ to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of $b[0..n-1]$ to truthify postcondition R:

Suppose we use invariant $P2$.

What does the repetend do?

At most one swap per iteration

Compare algorithms without writing code!
Dutch National Flag Algorithm: invariant P1

Q: b

R: b

P1: b

\[h=0; k=h; p=k; \]

while (\(p \neq n \)) {
 if (b[p] blue) \(p= p+1; \)
 else if (b[p] white) {
 swap b[p], b[k];
 p= p+1; k= k+1;
 }
 else { // b[p] red
 swap b[p], b[h];
 swap b[p], b[k];
 p= p+1; h=h+1; k= k+1;
 }
}
Dutch National Flag Algorithm: invariant P2

Q: b

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

R: b

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>reds</td>
<td>whites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blues</td>
</tr>
</tbody>
</table>

P2: b

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>h</td>
<td>k</td>
<td>p</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

\[
h = 0; \quad k = h; \quad p = n; \\\\while (k \neq p) \{ \\
\quad \text{if (} b[k] \text{ white) } \quad k = k+1; \\
\quad \text{else if (} b[k] \text{ blue) } \{ \\
\quad \quad p = p-1; \\
\quad \quad \text{swap } b[k], b[p]; \\
\quad \}\}
\quad \text{else } // b[k] \text{ is red} \\
\quad \quad \text{swap } b[k], b[h]; \\
\quad \quad h = h+1; \quad k = k+1;
\}\}

34
Asymptotically, which algorithm is faster?

Invariant 1

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td>whites</td>
<td>blues</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

h = 0; k = h; p = k;
while (p != n) {
 if (b[p] blue) p = p+1;
 else if (b[p] white) {
 swap b[p], b[k];
 p = p+1; k = k+1;
 }
 else { // b[p] red
 swap b[p], b[h];
 swap b[p], b[k];
 p = p+1; h = h+1; k = k+1;
 }
}

Invariant 2

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td>whites</td>
<td>?</td>
<td>blues</td>
<td></td>
</tr>
</tbody>
</table>

h = 0; k = h; p = n;
while (k != p) {
 if (b[k] white) k = k+1;
 else if (b[k] blue) {
 p = p-1;
 swap b[k], b[p];
 }
 else { // b[k] is red
 swap b[k], b[h];
 h = h+1; k = k+1;
 }
}

35
Asymptotically, which algorithm is faster?

Invariant 1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Invariant 2

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

might use 2 swaps per iteration

uses at most 1 swap per iteration

These two algorithms have the same asymptotic running time (both are $O(n)$)