RECURSION

Lecture 8
CS2110 – Fall 2018

A1 grades are available.
PLEASE READ YOUR FEEDBACK!
Mean: 93.9
Median: 97

Recursion: Look at Java Hypertext entry "recursion".

Note: Remember to do the tutorial for this week’s recitation. It is really important that you master this material.

Note: We’ve covered almost everything in Java! Just a few more things, which will be covered from time to time.

Recursion: Look at Java Hypertext entry "recursion".

About A3, linked list data structure

This is a linked list containing the list of integers (6, 7, 3).

header, containing size of list and pointer to first node

Each node (N@1, N@8, N@2) contains a value of the list and a pointer to next node (null if none)

Why use linked list? Can insert a value at beginning of list with just a few instructions — constant time

A3 introduces generics

Generic programming: a style of computer programming in which algorithms are written in terms of types to be specified later, which are then instantiated when needed for specific types.

A3 introduces generics

/** An instance maintains a set of some max size. */
public class TimeSet <E> { // E is a type parameter
 private Entry[] s; // The set elements are in s[0..n-1]
 private int n; // size of set.

 new TimeSet(10)

 This set can contain any values, e.g. {6, “xy”, 5.2, ‘a’}

}
A3 introduces inner classes

```java
/** An instance represents a linked list ... */
public class TimeSet<E> {  // E is a type parameter
    private Node first; // first node of list (null if size 0)
    private int size;  // Number of values.

    /** An instance holds an E element. */
    private class Entry {
        private E val;  // the element of type E
        private long t; // the time at which entry was created.

        Note how type parameter E is used
    }
    new TimeSet<String> // E will be String
```

Recursion – Real Life Examples

<noun phrase> is <noun>, or
 <adjective> <noun phrase>, or
 <adverb> <noun phrase>

Example:
 terrible horrible no-good very bad day

Sum the digits in a non-negative integer

```java
/** = sum of digits in n.  
 * Precondition: n >= 0 */
public static int sum(int n) {
    if (n < 10) return n;
    // { n has at least two digits }
    // return first digit + sum of rest
    return n%10 + sum(n/10);
}
```

Two different questions, two different answers

1. How is it executed?
 (or, why does this even work?)

2. How do we understand recursive methods?
 (or, how do we write/develop recursive methods?)
Stacks and Queues

Stack: list with (at least) two basic ops:
* Push an element onto its top
* Pop (remove) top element

Last-In-First-Out (LIFO)

Like a stack of trays in a cafeteria

Queue: list with (at least) two basic ops:
* Append an element
* Remove first element

First-In-First-Out (FIFO)

Americans wait in a line. The Brits wait in a queue!

Stack Frame

A “frame” contains information about a method call:
At runtime Java maintains a stack that contains frames for all method calls that are being executed but have not completed.

Method call: push a frame for call on stack. Assign argument values to parameters. Execute method body. Use the frame for the call to reference local variables and parameters.

End of method call: pop its frame from the stack; if it is a function leave the return value on top of stack.

Memorize method call execution!

A frame for a call contains parameters, local variables, and other information needed to properly execute a method call.

To execute a method call:
1. push a frame for the call on the stack,
2. assign argument values to parameters,
3. execute method body,
4. pop frame for call from stack, and (for a function) push returned value on stack

When executing method body look in frame for call for parameters and local variables.

Example: Sum the digits in a non-negative integer

```java
public static int sum(int n) {
  if (n < 10) return n;
  return n%10 + sum(n/10);
}

public static void main(String[] args) {
  int r = sum(824);
  System.out.println(r);
}
```

Frames for methods sum main method in the system

<table>
<thead>
<tr>
<th>Frame for method in the system that calls method main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame for method in the system that calls method main</td>
</tr>
<tr>
<td>Frame for method in the system that calls method main</td>
</tr>
</tbody>
</table>

Memorize method call execution!

To execute a method call:
1. push a frame for the call on the stack,
2. assign argument values to parameters,
3. execute method body,
4. pop frame for call from stack, and (for a function) push returned value on stack

The following steps through execution of a recursive call to demo execution of a method call.

Here, we use: www.pythontutor.com/visualize.html

Caution: the frame shows not ALL local variables but only those whose scope has been entered and not left.
Example: Sum the digits in a non-negative integer

```java
public static int sum(int n) {
    if (n < 10) return n;
    return n % 10 + sum(n/10);
}

public static void main(String[] args) {
    int r = sum(824);
    System.out.println(r);
}
```

Example: Sum the digits in a non-negative integer

```
public static int sum(int n) {
    if (n < 10) return n;
    return n % 10 + sum(n/10);
}

public static void main(String[] args) {
    int r = sum(824);
    System.out.println(r);
}
```

Example: Sum the digits in a non-negative integer

```
public static int sum(int n) {
    if (n < 10) return n;
    return n % 10 + sum(n/10);
}

public static void main(String[] args) {
    int r = sum(824);
    System.out.println(r);
}
```

Example: Sum the digits in a non-negative integer

```
public static int sum(int n) {
    if (n < 10) return n;
    return n % 10 + sum(n/10);
}

public static void main(String[] args) {
    int r = sum(824);
    System.out.println(r);
}
```

Example: Sum the digits in a non-negative integer

```
public static int sum(int n) {
    if (n < 10) return n;
    return n % 10 + sum(n/10);
}

public static void main(String[] args) {
    int r = sum(824);
    System.out.println(r);
}
```

Example: Sum the digits in a non-negative integer

```
public static int sum(int n) {
    if (n < 10) return n;
    return n % 10 + sum(n/10);
}

public static void main(String[] args) {
    int r = sum(824);
    System.out.println(r);
}
```

Example: Sum the digits in a non-negative integer

```
public static int sum(int n) {
    if (n < 10) return n;
    return n % 10 + sum(n/10);
}

public static void main(String[] args) {
    int r = sum(824);
    System.out.println(r);
}
```
Example: Sum the digits in a non-negative integer

```java
public static int sum(int n) {
    if (n < 10) return n;
    return n%10 + sum(n/10);
}
```

Using return value 14 main stores 14 in r and removes 14 from stack

Two different questions, two different answers

1. How is it executed?
 (or, why does this even work?)
 It’s not magic! Trace the code’s execution using the method call algorithm, drawing the stack frames as you go. Use only to gain understanding / assurance that recursion works.

2. How do we understand recursive methods?
 (or, how do we write/develop recursive methods?)
 This requires a totally different approach.

How to understand what a call does

Make a copy of the method spec, replacing the parameters of the method by the arguments

```java
sumDigs(654)  
sum of digits of n  
sum of digits of 654
```

```java
// n has at least two digits
return n%10 + sumDigs(n/10);
```
Step 1. Have a precise spec!
Step 2. Check that the method works in the base case(s).
Step 3. Look at the recursive case(s). In your mind replace each recursive call by what it does according to the spec and verify that the correct result is then obtained.

```java
public static int sumDigs(int n) {
    if (n < 10)
        return n;
    // n has at least two digits
    return n%10 + sumDigs(n/10);
}
```

Step 4. (No infinite recursion) Make sure the args of recursive calls are in some sense smaller than the parameters of the method.

n/10 < n, so it will get smaller until it has one digit.

Understanding a recursive method

Step 1. Have a precise spec!
Step 2. Check that the method works in the base case(s).
Step 3. Look at the recursive case(s). In your mind replace each recursive call by what it does according to the spec and verify correctness.

```java
public static int sumDigs(int n) {
    if (n < 10)
        return n;
    // n has at least two digits
    return n%10 + sumDigs(n/10);
}
```

Two different questions, two different answers

2. How do we understand recursive methods? (or, how do we write/develop recursive methods?)

Step 1. Have a precise spec!
Step 2. Check that the method works in the base case(s).
Step 3. Look at the recursive case(s). In your mind replace each recursive call by what it does according to the spec and verify correctness.
Step 4. (No infinite recursion) Make sure that the args of recursive calls are in some sense smaller than the parameters of the method.

Writing a recursive method

Step 1. Have a precise spec!
Step 2. Write the base case(s): Cases in which no recursive calls are needed. Generally for “small” values of the parameters.
Step 3. Look at all other cases. See how to define these cases in terms of smaller problems of the same kind. Then implement those definitions using recursive calls for those smaller problems of the same kind. Done suitably, point 4 (about termination) is automatically satisfied.
Step 4. (No infinite recursion) Make sure that the args of recursive calls are in some sense smaller than the parameters of the method.

Examples of writing recursive functions

For the rest of the class, we demo writing recursive functions using the approach outlined below. The java file we develop will be placed on the course webpage some time after the lecture.

Step 1. Have a precise spec!
Step 2. Write the base case(s).
Step 3. Look at all other cases. See how to define these cases in terms of smaller problems of the same kind. Then implement those definitions using recursive calls for those smaller problems of the same kind.
Step 4. Make sure recursive calls are “smaller” (no infinite recursion).
A String palindrome is a String that reads the same backward and forward:

\[\text{isPal("racecar") } \rightarrow \text{true} \quad \text{isPal("pumpkin") } \rightarrow \text{false} \]

A String with at least two characters is a palindrome if:

- (0) its first and last characters are equal and
- (1) chars between first & last form a palindrome:

\[\text{e.g. } \text{AMANAPLANACANALPANAMA} \]

have to be the same
e.g. \text{AMANAPLANACANALPANAMA} have to be a palindrome

A recursive definition!

Example: Is a string a palindrome?

```java
/** = \"is a palindrome\" */
public static boolean isPal(String s) {
    if (s.length() <= 1)
        return true;
    // { s has at least 2 chars }
    int n = s.length()-1;
    return s.charAt(0) == s.charAt(n) && isPal(s.substring(1,n));
}
```

Example: Count the e’s in a string

```java
/** = \"number of times c occurs in s \" */
public static int countEm(char c, String s) {
    if (s.length() == 0)
        return 0;
    // { s has at least 1 character }
    if (s.charAt(0) != c)
        return countEm(c, s.substring(1));
    // { first character of s is c }
    return 1 + countEm(c, s.substring(1));
}
```

The Fibonacci Function

Mathematical definition:

\[\text{fib}(0) = 0 \quad \text{fib}(1) = 1 \quad \text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2) \quad n \geq 2 \]

Fibonacci sequence: \(0 \ 1 \ 1 \ 2 \ 3 \ 5 \ 8 \ 13 \ \ldots\)

```java
/** = \text{fibonacci}(n). Pre: n \geq 0 */
static int fib(int n) {
    if (n <= 1) return n;
    // { 1 < n }
    return fib(n-1) + fib(n-2);
}
```

Example: A man a plan a canal Panama

A recursive definition!

```
Example: Count the e’s in a string
```