
Assignment	to	a	simple	variable	

The Hoare triple for assignment to a simple variable (not an array element) defines that assignment in terms of
how one prove it correct. You will be surprised you at its simplicity!

Suppose we want to find the precondition under which execution of x= 2; terminates with 0 ≤ x ≤ 4:

 {?} x= 2; {0 ≤ x ≤ 4}

Since the assignment is x= 2; the precondition is the postcondition

 0 ≤ x ≤ 4

but with every occurrence of x replaced by 2:

 0 ≤ 2 ≤ 4

Since the precondition is equivalent to true, we can write:

 {true} x= 2; {0 ≤ x ≤ 4}

Thus, in all initial states, execution of x= 2; terminates with 0 ≤ x ≤ 4.

Note what we did: Because the assignment was x= 2; the precondition was the postcondition with every occur-
rence of x in the postcondition by 2.

Here’s another example:

 {?} x= x+1; {x ≥ 5}

Since the assignment is x= x+1; the precondition is the postcondition x ≥ 5 but with every occurrence of x in it re-
placed by x+1:

 x+1 ≥ 5

Which we can rewrite as x ≥ 4: {x ≥ 4} x= x+1; {x ≥ 5}

This way of figuring out the precondition works for every assignment x= e; to a simple variable x. To define this
carefully, we introduce	this	notation		R[x:=	e]	to	denote	a	copy	of	assertion	R	but	with	each	occurrence	of	x	
replaced	by	e.	For	example,	consider	this:	

	 (x*x	≥	5)[x:=	x+1]				is				(x+1)	*	(x+1)	≥	5	

The	value	is	the	expression	but	with	every	occurrence	of	x	replaced	by	x+1.	

Definition	of	assignment	

We	then	define	the	assignment	statement	like	this:

 Hoare-triple for x= e;
 {R[x:= e] && (evaluation of e terminates normally)} x= e; {R}

The	extra	term	is	needed	to	eliminate	cases	where	evaluation	of	e	aborts	(say	by	dividing	by	0)	or	goes	into	
an	infinite	loop.		For	example,	in	no	state	will	the	this	statement	terminate	with	y	=	5.	

	 {false}		x	=	6/0;	{y	=	5}	

We	take	that	it	for	granted	that	evaluation	will	terminate	normally	to	simplify	later	discussions	and	write	the	
definition	this	way:	

 Hoare-triple for x= e;
 {R[x:= e]} x= e; {R}

Note	that	we	can	think	of	this	as	the	definition	of	assignment	to	a	simple	variable	—not	in	terms	of	how	to	
execute	it	but	in	terms	of	how	to	prove	it	correct.	That’s	neat!	

Definition	of	assignment	

Here’s	another	example.	We	want	find	to	the	precondition	for	the	following	sequence:	

Assignment	to	a	simple	variable	

	 k=	k+1;	
	 s=	s	+	k;	
	 {s	=	sum	of	m..k}	

Using	the	rule	just	given,	we	find	the	precondition	of	s=	s+k:		
	
	 k=	k+1;	
						 {s+k		=	sum	of	m..k}	
	 s=	s	+	k;	
	 {s	=	sum	of	m..k}		

Using	the	rule	again,	we	find	the	precondition	of	k=	k+1:		

	 {s	+	k+1	=	sum	of	m..k+1}	
	 k=	k+1;	
						 {s+k		=	sum	of	m..k}	
	 s=	s	+	k;	
	 {s	=	sum	of	m..k}	

We	can	simplify	this	precondition.	To	make	it	absolutely	clear,		we	first	split	off	the	last	tem	of	the	sum	and	
then	subtracting	k+1	from	both	sides:	

	 	 s+k+1	=	sum	of	m..k+1	
																												=							<split	off	last	term	of	sum>	
																										 s+k+1	=	sum	of	m..k		+		k+1	
																												=							<subtract	k=1	from	both	sides>	
																										 s	=	sum	of	m..k		

So	the	precondition	is		s	=	sum	of	m..k	

	 {s	=	sum	of	m..k}	
	 k=	k+1;	
						 {s+k		=	sum	of	m..k}	
	 s=	s	+	k;	
	 {s	=	sum	of	m..k}	

We	see	that	the	assignments	k=	k=1;	s=	s+k;	leave	the	assertion	s	=	sum	of	m..k	true	while	increasing	k	by	1.	

Two	exercises	

We	give	you	two	exercises	to	try.	In	each	of	the	sequences	below,	calculate	the	precondition	starting	from	the	
postcondition.	It	may	help	to	simplify	as	you	go.	Since	x	and	y	are	being	replaced,	it	helps	to	keep	the	number	
of	occurrences	of	them	to	a	minimum.	

For	example,	you	can	rewrite				x	=	B		&&		y	=	x	+	A				as				x	=	B		&&		y	=	B	+	A		.	

The	first	exercise	is	relatively	easy,	because	you	know	that	the	sequence	of	statements	swaps	the	values	of	x	
and	y.	What	does	the	second	sequence	do?	

{ } { }

t= x; x= x + y;

{ } { }
x= y; y= x – y;

{ } { }
y= t; x= x – y;

{x = B and y = C} {x = B and y = C}	

