Announcements

- Next week’s section: make your BugTrees hashable.
- Watch the tutorial videos on hashing:
 - http://www.cs.cornell.edu/courses/cs2110/2017sp/online/hashing/01hashing.html
 - Also linked from Recitation 07 on Lecture Notes page
- As usual, watch videos BEFORE recitation so you can complete the assignment DURING recitation.

This lecture has a plot twist! See if you can spot it coming.

Readings and Homework

- Read Chapter 26 “A Heap Implementation” to learn about heaps

Exercise: Salespeople often make matrices that show all the great features of their product that the competitor’s product lacks. Try this for a heap versus a BST. First, try and sell someone on a BST. List some desirable properties of a BST that a heap lacks. Now be the heap salesperson: List some good things about heaps that a BST lacks. Can you think of situations where you would favor one over the other?

Abstract vs concrete data structures

- Abstract data structures are interfaces
 - they specify only interface (method names and specs)
 - not implementation (method bodies, fields, …)
- Abstract data structures can have multiple possible implementations.

Stacks and queues are restricted lists

- Stack (LIFO) implemented using a List
 - allows only \texttt{add(0, val), remove(0)} (push, pop)
- Queue (FIFO) implemented using a List
 - allows only \texttt{add(n, val), remove(0)} (enqueue, dequeue)
- These operations are \texttt{O(1)} in a LinkedList (not true in ArrayList)

Both efficiently implementable using a singly linked list with head and tail:

\[\text{head} \rightarrow 55 \rightarrow 12 \rightarrow 19 \rightarrow 16 \rightarrow \text{tail} \]
Interface Bag (not in Java Collections)

```java
interface Bag<E> {
    implements Iterable {
        void add(E obj);
        boolean contains(E obj);
        boolean remove(E obj);
        int size();
        boolean isEmpty();
        Iterator<E> iterator();
    }
}
```

Refinements of Bag: Stack, Queue, PriorityQueue

Also called multiset

Like a set except that a value can be in it more than once. Example: a bag of coins

Priority queue

- Bag in which data items are Comparable
- Smaller elements (determined by compareTo()) have higher priority
- remove() return the element with the highest priority = least element in the compareTo() ordering
- break ties arbitrarily

Many uses of priority queues (& heaps)

- Event-driven simulation: customers in a line
- Collision detection: "next time of contact" for colliding bodies
- Graph searching: Dijkstra's algorithm, Prim's algorithm
- AI Path Planning: A* search
- Statistics: maintain largest M values in a sequence
- Operating systems: load balancing, interrupt handling
- Discrete optimization: bin packing, scheduling
- College: prioritizing assignments for multiple classes.

Java.util.PriorityQueue<E>

```java
interface PriorityQueue<E> {
    boolean add(E e) {...} //insert e.
    void clear() {...} //remove all elements.
    E peek() {...} //return min elem.
    E poll() {...} //remove/return min elem.
    boolean contains(E e)
    boolean remove(E e)
    int size() {...}
    Iterator<E> iterator()
}
```

Can we do better?

Heap: binary tree with certain properties

- A heap is a concrete data structure that can be used to implement priority queues
- Gives better complexity than either ordered or unordered list implementation:
 - add(): O(log n) (n is the size of the heap)
 - poll(): O(log n)
- O(n log n) to process n elements
- Do not confuse with heap memory, where the Java virtual machine allocates space for objects – different usage of the word heap
Heap: first property
Every element is >= its parent

Heap: second property: is complete, has no holes
Every level (except last) completely filled.
Nodes on bottom level are as far left as possible.

Heap: Second property: has no “holes”
Not a heap because it has two holes

Heap
- Binary tree with data at each node
- Satisfies the Heap Order Invariant:
 1. Every element is ≥ its parent.
 2. Binary tree is complete (no holes)

Heap Quiz 1: Heap it real.
Which of the following are valid heaps?

add(e)
1. Put in the new element in a new node

2. Bubble new element up if less than parent
add() to a tree of size n

• Time is $O(\log n)$, since the tree is balanced
 – size of tree is exponential as a function of depth
 – depth of tree is logarithmic as a function of size

Numbering the nodes in a heap

- Number node starting at root row by row, left to right
- Level-order traversal

Children of node k are nodes $2k+1$ and $2k+2$
Parent of node k is node $(k-1)/2$
Implementing Heaps

```java
public class HeapNode {
    private int value;
    private HeapNode left;
    private HeapNode right;
    ...
}
```

Store a heap in an array (or ArrayList) b!

- Heap nodes in b in order, going across each level from left to right, top to bottom
- Children of b[k] are b[2k + 1] and b[2k + 2]
- Parent of b[k] is b[(k – 1)/2]

```
0 1 2 3 5 6 7 8
```

Tree structure is implicit. No need for explicit links!

```
add() -- assuming there is space
```

```java
/** An instance of a heap */
class Heap<E> {
    E[] b= new E[50]; // heap is b[0..n-1]
    int n= 0; // heap invariant is true

    /** Add e to the heap */
    public void add(E e) {
        b[n]= e;
        n= n + 1;
        bubbleUp(n-1); // given on next slide
    }
}
```

Add () . Remember, heap is in b[0..n-1]

```java
/** Bubble element #k up to its position. */
private void bubbleUp(int k) {
    int p= (k-1)/2;
    // inv: p is parent of k and every elemnt
    // except perhaps k is >= its parent
    while (k > 0 && b[k].compareTo(b[p]) < 0) {
        swap(b[k], b[p]);
        k= p;
        p= (k-1)/2;
    }
}
```

Heap Quiz 2: Pile it on!

Here's a heap, stored in an array:

```
[1 5 7 6 7 10]
```

Write the array after execution of add(4)? Assume the existing array is large enough to store the additional element.

A. [1 5 7 6 7 10 4]
B. [1 4 5 6 7 10 7]
C. [1 5 4 6 7 10 7]
D. [1 4 5 6 7 6 7 10]
poll()
1. Save top element in a local variable

poll()
2. Assign last value to the root, delete last value from heap

poll()
3. Bubble root value down

poll()
3. Bubble root value down

poll()

poll()

1. Save top element in a local variable

poll()

2. Assign last value to the root, delete last value from heap

poll()

3. Bubble root value down

poll()

3. Bubble root value down
3. Bubble root value down

poll()

• Save the least element (the root)
• Assign last element of the heap to the root.
• Remove last element of the heap.
• Bubble element down – always with smaller child, until heap invariant is true again.
The heap invariant is maintained!
• Return the saved element

Time is O(log n), since the tree is balanced

poll()

public E poll() {
 if (n == 0) return null;
 E v = b[0]; // smallest value at root.
 n = n - 1; // move last
 b[0] = b[n]; // element to root
 bubbleDown(0);
 return v;
}

/** Remove and return the smallest element */
public E poll() {
 if (n == 0) return null;
 E v = b[0]; // smallest value at root.
 n = n - 1; // move last
 b[0] = b[n]; // element to root
 bubbleDown(0);
 return v;
}

c’s smaller child

/** Return index of smaller child of node k
(2k+2 if k >= n) */
public int smallerChild(int k, int n) {
 int c = 2*k + 2; // k’s right child
 if (c >= n || b[c-1].compareTo(b[c]) < 0)
c = c-1;
 return c;
}

/** Bubble root down to its heap position. */
private void bubbleDown() {
 int k = 0;
 int c = smallerChild(k, n); // c is k[0]’s smallest child
 while (c < n && b[c].compareTo(b[k]) > 0) {
 swap(k, c);
 k = c;
 c = smallerChild(k, n);
 }
}
Change heap behaviour a bit

Separate priority from value and do this:

- `add(e, p);` // add element e with priority p (a double)

 THIS IS EASY!

Be able to change priority

- `change(e, p);` // change priority of e to p

 THIS IS HARD!

Big question: How do we find e in the heap?

Searching heap takes time proportional to its size! No good!

Once found, change priority and bubble up or down. OKAY

Assignment A6: implement this heap! Use a second data structure to make change-priority expected log n time

HeapSort(b, n) — Sort b[0..n-1]

What your appetite — use heap to get exactly n log n in-place sorting algorithm. 2 steps, each is O(n log n)

1. Make b[0..n-1] into a max-heap (in place)

 for (k=n-1; k > 0; k= k-1) {
 b[k]= poll // i.e. take max element out of heap.
 }

 This algorithm is on course website

A max-heap has max value at root