Important Announcements

- **A4 is out!** Due two weeks from today. Follow the timetable and enjoy a stress-free A4 experience!
- **Mid-semester TA evaluations** are open; please participate!
 - Your feedback can help our staff improve YOUR experience for the rest of this semester.
- **Next week’s recitation is canceled!**
 - All Tuesday sections will be office hours instead (held in same room as recitation unless noted on Piazza)

Tree Overview

Tree: data structure with nodes, similar to linked list

- Each node may have zero or more successors (children)
- Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root

Binary tree: tree in which each node can have at most two children: a left child and a right child

- **General tree:** tree in which each node can have any number of children

Binary trees were in A1!

You have seen a binary tree in A1.

A PhD object phd has one or two advisors. Here is an intellectual ancestral tree!

```
  phd
   \______\_____
  ad1   ad2
   \     /    \
       /      \
      /        \
     /          \
    /            \
   /              \
  ___________  ___________
 M                  G
 | |                        |
 G | |                          |
 | |  |                         |
 B | H | J | N | S               |
 | | | | | |                      |
 M | and G: ancestors of D      |
 | P: parent of N              |
 | M and G: left child of P; S: right child of P |
```

A collection of several trees is called a ...

Tree terminology

- **M**: root of this tree
- **G**: root of the left subtree of M
- **B, H, J, N, S**: leaves (they have no children)
- **N**: left child of P; S: right child of P
- **P**: parent of N
- **M and G**: ancestors of D
- **P, N, S**: descendants of W
- **J** is at depth 2 (i.e. length of path from root = no. of edges)
- The subtree rooted at W has height (i.e. length of longest path to a leaf) of 2
- A collection of several trees is called a ...

Class for binary tree node

```
class TreeNode<T> {
    private T datum;
    private TreeNode<T> left, right;
    /** Constructor: one-node tree with datum x */
    public TreeNode(T d) { datum= d; left= null; right= null; }
    /** Constr: Tree with root value x, left tree l, right tree r */
    public TreeNode(T d, TreeNode<T> l, TreeNode<T> r) {
        datum= d; left= l; right= r;
    }
    // more methods: getValue, setValue, getLeft, setLeft, etc.
}```
Binary versus general tree

In a binary tree, each node has up to two pointers: to the left subtree and to the right subtree:
- One or both could be null, meaning the subtree is empty (remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes (and they need not be ordered):
- Very useful in some situations ...
- ... one of which may be in an assignment!

Class for general tree nodes

class GTreeNode<T> {
  private T datum;
  private List<GTreeNode<T>> children;
  //appropriate constructors, getters, setters, etc.
}

Java.util.List is an interface!
It defines the methods that all implementation must implement.
Whoever writes this class gets to decide what implementation to use — ArrayList? LinkedList? Etc.?

Applications of Tree: Syntax Trees

- Most languages (natural and computer) have a recursive, hierarchical structure
- This structure is implicit in ordinary textual representation
- Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
- ASTs are easier to optimize, generate code from, etc. than textual representation
- A parser converts textual representations to AST

In textual representation:
Parentheses show hierarchical structure

In tree representation:
Hierarchy is explicit in the structure of the tree

We’ll talk more about expressions and trees in next lecture

Got that?

(1 + (9 - 2)) * 7

\[
\begin{align*}
\ast & \quad 7 \\
+ & \quad (1 + (9 - 2)) \\
(2 + 3) & \quad ((2 + 3) \ast (5 + 7)) \\
F & \quad , \ast, +, \text{ and 7 are ancestors of 1} \\
T & \quad 9's \ parent \ is \ - \\
F & \quad \text{The tree's height is 4} \\
F & \quad 1 \ is \ a \ leaf \ node \\
T & \quad 9 \ is \ at \ depth \ 3 \\
F & \quad \text{The root is 7}
\end{align*}
\]
Recursion on trees

Trees are defined recursively:

A binary tree is either
(1) empty
or
(2) a value (called the root value), a left binary tree, and a right binary tree.

Trees are defined recursively, so recursive methods can be written to process trees in an obvious way.

Base case
- empty tree (null)
- leaf

Recursive case
- solve problem on each subtree
- put solutions together to get solution for full tree

Class for binary tree nodes

```java
class BinTreeNode<T> {
 private T datum;
 private BinTreeNode<T> left;
 private BinTreeNode<T> right;
 //appropriate constructors, getters, setters, etc.
}
```

Looking at trees recursively

```
value
left subtree
right subtree
```

Searching in a Binary Tree

```java
/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {
 if (t == null) return false;
 if (x.equals(t.datum)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively
Searching in a Binary Tree

```java
/** Return true if x is the datum in a node of tree t */
public static boolean treeSearch(T x, TreeNode<T> t) {
 if (t == null) return false;
 if (x.equals(t.datum)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

// VERY IMPORTANT!
// We sometimes talk of t as the root of the tree.
// But we also use t to denote the whole tree.
```

Some useful methods

```java
/** Return true if node n is a leaf */
public static boolean isLeaf(Node n) {
 return n != null && n.left == null && n.right == null;
}

/** Return height of node n (postorder traversal) */
public static int height(Node n) {
 if (n == null) return -1; // empty tree
 return 1 + Math.max(height(n.left), height(n.right));
}

/** Return number of nodes in n (postorder traversal) */
public static int numNodes(Node n) {
 if (n == null) return 0;
 return 1 + numNodes(n.left) + numNodes(n.right);
}

// Binary Search Tree (BST)

If the tree data is ordered and has no duplicate values:
- in every subtree, All left descendants of a node come before the node
- All right descendants of a node come after the node

Search can be made MUCH faster

Boolean searchBST(n, v):
- if n == null, return false
- if n.v == v, return true
- if v < n.v return searchBST(n.left, v)
- if v > n.v return searchBST(n.right, v)

```

Building a BST

- To insert a new item
  - Pretend to look for the item
  - Put the new node in the place where you fall off the tree
- This can be done using either recursion or iteration
- Example
  - Tree uses alphabetical order
  - Months appear for insertion in calendar order

```java
// Binary Search Tree (BST)

if (the tree data is ordered and has no duplicate values):
 in every subtree,
 All left descendants of a node come before the node
 All right descendants of a node come after the node
 Search can be made MUCH faster

boolean searchBST(Node n, int v):
 if n == null, return false
 if n.v == v, return true
 if v < n.v return searchBST(n.left, v)
 if v > n.v return searchBST(n.right, v)
```

```java
// Searching in a Binary Tree

** Return true iff x is the datum in a node of tree **
public static boolean treeSearch(T x, TreeNode<T> t) {
 if (t == null) return false;
 if (x.equals(t.datum)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

// VERY IMPORTANT!
// We sometimes talk of t as the root of the tree.
// But we also use t to denote the whole tree.
```
What can go wrong?

A BST makes searches very fast, unless:
- Nodes are inserted in increasing order
- In this case, we're basically building a linked list (with some extra wasted space for the left fields, which aren't being used)

BST works great if data arrives in random order

Printing contents of BST

Because of ordering rules for a BST, it's easy to print the items in alphabetical order:
- Recursively print left subtree
- Print the node
- Recursively print right subtree

```
/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
 if (t== null) return;
 print(t.left);
 System.out.print(t.datum);
 print(t.right);
}
```

Tree traversals

"Walking" over the whole tree is a tree traversal:
- Done often enough that there are standard names:
  Previous example:
  - In-order traversal
    - Process left subtree
    - Process root
    - Process right subtree
  Note: Can do other processing besides printing

Other standard kinds of traversals:
- Preorder traversal
  - Process root
  - Process left subtree
  - Process right subtree
- In-order traversal
  - Process left subtree
  - Process right subtree
  - Process root
- Level-order traversal
  - Not recursive: uses a queue (we'll cover this later)

Useful facts about binary trees

Max # of nodes at depth d: $2^d$

If height of tree is $h$:
- Min # of nodes: $h + 1$
- Max # of nodes in tree: $2^h + \ldots + 2^0 = 2^{h+1} - 1$

Complete binary tree:
- All levels of tree down to a certain depth are completely filled

Height 2, maximum number of nodes

Height 2, minimum number of nodes

Things to think about

What if we want to delete data from a BST?

A BST works great as long as it's balanced
- How can we keep it balanced? This turns out to be hard enough to motivate us to create other kinds of trees

Tree Summary

- A tree is a recursive data structure
- Each node has 0 or more successors (children)
- Each node except the root has exactly one predecessor (parent)
- All nodes are reachable from the root
- A node with no children (or empty children) is called a leaf
- Special case: binary tree
  - Binary tree nodes have a left and a right child
  - Either or both children can be empty (null)
- Trees are useful in many situations, including exposing the recursive structure of natural language and computer programs