A7. Implement shortest-path algorithm

One semester: Average time was 3.3 hours.
We give you complete set of test cases and a GUI to play with.
Efficiency and simplicity of code will be graded.
Read pinned A7 FAQs note carefully:

2. Important! Grading guidelines.

We demo it.
Dijkstra’s shortest-path algorithm

Edsger Dijkstra, in an interview in 2010 (CACM):

... the algorithm for the shortest path, which I designed in about 20 minutes. One morning I was shopping in Amsterdam with my young fiance, and tired, we sat down on the cafe terrace to drink a cup of coffee, and I was just thinking about whether I could do this, and I then designed the algorithm for the shortest path. As I said, it was a 20-minute invention. [Took place in 1956]

Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and his contributions. As a historical record, this is a gold mine.
Dijkstra’s shortest-path algorithm

Dijkstra describes the algorithm in English:
- When he designed it in 1956 (he was 26 years old), most people were programming in assembly language.
- Only one high-level language: Fortran, developed by John Backus at IBM and not quite finished.

No theory of order-of-execution time — topic yet to be developed. In paper, Dijkstra says, “my solution is preferred to another one … “the amount of work to be done seems considerably less.”

1968 NATO Conference on Software Engineering

- In Garmisch, Germany
- Academicians and industry people attended
- For first time, people admitted they did not know what they were doing when developing/testing software. Concepts, methodologies, tools were inadequate, missing
- The term *software engineering* was born at this conference.

Get a good sense of the times by reading these reports!
1968 NATO Conference on
Software Engineering, Garmisch, Germany

Term “software engineering” coined for this conference
1968 NATO Conference on Software Engineering, Garmisch, Germany
1968/69 NATO Conferences on Software Engineering

Editors of the proceedings

Beards
The reason why some people grow aggressive tufts of facial hair
Is that they do not like to show the chin that isn't there.

a grook by Piet Hein

Edsger Dijkstra Niklaus Wirth Tony Hoare David Gries
Dijkstra’s shortest path algorithm
The n (> 0) nodes of a graph numbered 0..n-1.
Each edge has a positive weight.
\(\text{wgt}(v_1, v_2)\) is the weight of the edge from node \(v_1\) to \(v_2\).
Some node \(v\) be selected as the start node.
Calculate length of shortest path from \(v\) to each node.

Use an array \(d[0..n-1]\): for each node \(w\), store in \(d[w]\) the length of the shortest path from \(v\) to \(w\).

\[
\begin{align*}
 d[0] &= 2 \\
 d[1] &= 5 \\
 d[2] &= 6 \\
 d[3] &= 7 \\
 d[4] &= 0
\end{align*}
\]
1. For a Settled node s, a shortest path from v to s contains only settled nodes and $d[s]$ is length of shortest $v \rightarrow s$ path.

2. For a Frontier node f, at least one $v \rightarrow f$ path contains only settled nodes (except perhaps for f) and $d[f]$ is the length of the shortest such path.

3. All edges leaving S go to F.

Another way of saying 3: There are no edges from S to the far-off set.
1. For a Settled node \(s \), a shortest path from \(v \) to \(s \) contains only settled nodes and \(d[s] \) is length of shortest \(v \to s \) path.

2. For a Frontier node \(f \), at least one \(v \to f \) path contains only settled nodes (except perhaps for \(f \)) and \(d[f] \) is the length of the shortest such path.

3. All edges leaving \(S \) go to \(F \).
1. For a Settled node s, \(d[s] \) is length of shortest \(v \to s \) path.

2. For a Frontier node f, \(d[f] \) is length of shortest \(v \to f \) path using only Settled nodes (except for f).

3. All edges leaving S go to F.

Theorem. For a node f in F with minimum d value (over nodes in F), \(d[f] \) is the length of a shortest path from v to f.

Proof. Show that any other \(v \to f \) path has a length \(\geq d[f] \). Look only at case that v is in S.
1. For a Settled node s, \(d[s] \) is length of shortest \(v \to s \) path.

2. For a Frontier node f, \(d[f] \) is length of shortest \(v \to f \) path using only Settled nodes (except for f).

3. All edges leaving S go to F.

Theorem. For a node f in F with minimum d value (over nodes in F), \(d[f] \) is the length of a shortest path from \(v \) to f.

Case 1: \(v \) is in S.

Case 2: \(v \) is in F. Note that \(d[v] \) is 0; it has minimum d value
The algorithm

1. For s, $d[s]$ is length of shortest $v \rightarrow s$ path.
2. For f, $d[f]$ is length of shortest $v \rightarrow f$ path using red nodes (except for f).
3. Edges leaving S go to F.

Theorem: For a node f in F with min d value, $d[f]$ is shortest path length

Loopy question 1:
How does the loop start? What is done to truthify the invariant?

$S = \{ \}$; $F = \{ v \}$; $d[v] = 0$;
The algorithm

1. For s, \(d[s] \) is length of shortest \(v \to s \) path.
2. For f, \(d[f] \) is length of shortest \(v \to f \) path using red nodes (except for f).
3. Edges leaving S go to F.

Theorem: For a node f in F with min d value, \(d[f] \) is shortest path length

}\)

Loopy question 2:
When does loop stop? When is array d completely calculated?
The algorithm

\[
\text{S} \quad \text{F} \quad \text{Far off}
\]

\[
\text{f} \quad \text{f}
\]

\[
\text{S}= \{ \}; \text{F}= \{ v \}; \text{d}[v]= 0;
\]

while (F \neq \{ \}) {
 \[
f= \text{node in F with min d value};
\]
 Remove f from F, add it to S;
}

1. For s, d[s] is length of shortest v \rightarrow s path.

2. For f, d[f] is length of shortest v \rightarrow f path using red nodes (except for f).

3. Edges leaving S go to F.

Theorem: For a node f in F with min d value, d[f] is shortest path length

Loopy question 3: Progress toward termination?
The algorithm

S F Far off
f w w

1. For s, $d[s]$ is length of shortest $v \rightarrow s$ path.

2. For f, $d[f]$ is length of shortest $v \rightarrow f$ path using red nodes (except for f).

3. Edges leaving S go to F.

Theorem: For a node f in F with min d value, $d[f]$ is shortest path length.

S= \{ \}; F= \{ v \}; d[v]= 0;
while (F \neq \{\}) {
 f= node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 } else {
 }
 }
}

Loopy question 4: Maintain invariant?
The algorithm

1. For s, \(d[s] \) is length of shortest \(v \to s \) path.
2. For f, \(d[f] \) is length of shortest \(v \to f \) path using red nodes (except for f).
3. Edges leaving S go to F.

Theorem: For a node f in F with min d value, \(d[f] \) is shortest path length

Loopy question 4: Maintain invariant?
The algorithm

1. For s, $d[s]$ is length of shortest $v \rightarrow s$ path.

2. For f, $d[f]$ is length of shortest $v \rightarrow f$ path of form

3. Edges leaving S go to F.

Theorem: For a node f in F with min d value, $d[f]$ is its shortest path length

$$S = \{ \}; F = \{ v \}; d[v] = 0;$$

while ($F \neq \{\}$) {
 f= node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w]=$d[f]$ + wgt(f, w);
 add w to F;
 } else
 if ($d[f]$ + wgt (f,w) < $d[w]$) {
 d[w]=$d[f]$ + wgt(f, w);
 }
 }
}

Algorithm is finished!
Extend algorithm to include the shortest path

Let’s extend the algorithm to calculate not only the length of the shortest path but the path itself.

d[0] = 2
d[1] = 5
d[2] = 6
d[3] = 7
d[4] = 0
Extend algorithm to include the shortest path

Question: should we store in v itself the shortest path from v to every node? Or do we need another data structure to record these paths?

Not finished!
And how do we maintain it?

\[d[0] = 2 \]
\[d[1] = 5 \]
\[d[2] = 6 \]
\[d[3] = 7 \]
\[d[4] = 0 \]
Extend algorithm to include the shortest path

For each node, maintain the backpointer on the shortest path to that node.

Shortest path to 0 is $v \rightarrow 0$. Node 0 backpointer is 4.
Shortest path to 1 is $v \rightarrow 0 \rightarrow 1$. Node 1 backpointer is 0.
Shortest path to 2 is $v \rightarrow 0 \rightarrow 2$. Node 2 backpointer is 0.
Shortest path to 3 is $v \rightarrow 0 \rightarrow 2 \rightarrow 1$. Node 3 backpointer is 2.

$\text{bk}[w]$ is w’s backpointer

$d[0] = 2 \quad \text{bk}[0] = 4$
d$d[1] = 5 \quad \text{bk}[1] = 0$
d$d[2] = 6 \quad \text{bk}[2] = 0$
d$d[3] = 7 \quad \text{bk}[3] = 2$
d$d[4] = 0 \quad \text{bk}[4]$ (none)
$S = \{ \}$; $F = \{v\}$; $d[v] = 0$;

while ($F \neq \{\}$) {
 $f =$ node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 $d[w] = d[f] + \text{wgt}(f, w)$;
 add w to F; $bk[w] = f$;
 } else if ($d[f] + \text{wgt}(f, w) < d[w]$) {
 $d[w] = d[f] + \text{wgt}(f, w)$;
 $bk[w] = f$;
 }
 }
}

Maintain backpointers

Wow! It’s so easy to maintain backpointers!

When w not in S or F:
Getting first shortest path so far:

When w in S or F and have shorter path to w:
This is our final high-level algorithm. These issues and questions remain:

1. **How do we implement F?**
2. The nodes of the graph will be objects of class Node, not ints. How will we maintain the data in arrays d and bk?
3. **How do we tell quickly whether w is in S or F?**
4. **How do we analyze execution time of the algorithm?**
S = \{ \}; F = \{v\}; d[v] = 0;
while (F ≠ \{\}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 } else if (d[f]+wgt (f,w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
 }
}
S F Far off

\[S = \{ \}; \quad F = \{v\}; \quad d[v] = 0; \]

while \((F \neq \{\})\) {

\[f = \text{node in F with min d value}; \]

Remove \(f\) from \(F\), add it to \(S\);

for each neighbor \(w\) of \(f\) {

if \((w \text{ not in } S \text{ or } F)\) {

\[d[w] = d[f] + \text{wgt}(f, w); \]

add \(w\) to \(F\); \(bk[w] = f;\)

} else if \((d[f] + \text{wgt}(f, w) < d[w])\) {

\[d[w] = d[f] + \text{wgt}(f, w); \]

\(bk[w] = f;\)

}

}}

For what nodes do we need a distance and a backpointer?
Far off

\[
S = \{\}; \quad F = \{v\}; \quad d[v] = 0;
\]

while \((F \neq \{\})\) {
 \[
f = \text{node in } F \text{ with min } d \text{ value;}
 \]
 Remove \(f\) from \(F\), add it to \(S\);
 for each neighbor \(w\) of \(f\) {
 if \((w \text{ not in } S \text{ or } F)\) {
 \[
d[w] = d[f] + wgt(f, w);
 \]
 add \(w\) to \(F\); \(bk[w] = f\);
 } else if \((d[f] + wgt(f, w) < d[w])\) {
 \[
d[w] = d[f] + wgt(f, w);
 \]
 \(bk[w] = f\);
 }
 }
}

For what nodes do we need a distance and a backpointer?

For every node in \(S\) or \(F\) we need both its \(d\)-value and its backpointer (null for \(v\)).

Don’t want to use arrays \(d\) and \(bk\)! Instead, keep information associated with a node. What data structure to use for the two values?
S = {}; F = {v}; d[v] = 0;

while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 } else if (d[f] + wgt(f, w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
 }
}

For what nodes do we need a distance and a backpointer?

For every node in S or F we need both its d-value and its backpointer (null for v)

public class SFinfo {
 private node bckPntr;
 private int distance;
 ...
}

S = \{\}; F = \{v\}; d[v] = 0;

while (F \neq \{\}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 } else if (d[f] + wgt(f, w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
 }
}

F implemented as a heap of Nodes.
What data structure do we use to maintain an SFinfo object for each node in S and F?

For every node in S or F we need both its d-value and its backpointer (null for v):

```java
public class SFinfo {
    private node bckPtr;
    private int distance;
    ...
}
```
Far off

\[S = \{\}; \quad F = \{v\}; \quad d[v] = 0; \]

while (F ≠ \{\}) {

 \(f = \) node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 \(d[w] = d[f] + \text{wgt}(f, w); \)
 add w to F; bk[w] = f;
 } else if (d[f] + \text{wgt}(f, w) < d[w]) {
 \(d[w] = d[f] + \text{wgt}(f, w); \)
 bk[w] = f;
 }
 }
}

For every node in S or F, we need an object of class SFdata. What data structure to use?

```
public class SFinfo {
    private node bkPntr;
    private int distance;
    ...
}
```

You will implement the algorithm on this slide. S, d, and b are replaced by map. F is implemented as a min-heap.

Algorithm to implement
S

F

Far off

\[S = \{ \}; F = \{ v \}; d[v] = 0; \]

while \((F \neq \{ \}) \) {

\[f = \text{node in } F \text{ with min } d \text{ value;} \]

Remove \(f \) from \(F \), add it to \(S \);

for each neighbor \(w \) of \(f \) {

if \((w \text{ not in } S \text{ or } F) \) {

\[d[w] = d[f] + \text{wgt}(f, w); \]

add \(w \) to \(F \); \(bk[w] = f; \)

} else if \((d[f] + \text{wgt}(f, w) < d[w]) \) {

\[d[w] = d[f] + \text{wgt}(f, w); \]

\[bk[w] = f; \]

}

}

}

\text{public class SFinfo \{}

\text{private node backPntr;}

\text{private int distance; \ldots \}}

\text{HashMap\langle Node, SFinfo\rangle map}

Investigate execution time.
Important: understand algorithm well enough to easily determine the total number of times each part is executed/evaluated

Assume:
\(n \) nodes reachable from \(v \)
\(e \) edges leaving those \(n \) nodes
S F Far off

\[S = \{ \}; F = \{v\}; d[v] = 0; \]

while (F \neq \{\}) {

 \(f = \text{node in } F \text{ with min } d \text{ value; } \)
 Remove \(f \) from \(F \), add it to \(S \);

 for each neighbor \(w \) of \(f \) {
 if (w not in \(S \) or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 } else if (d[f] + wgt(f, w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
 }
}

HashMap<Node, SFinfo> map

Assume:
n nodes reachable from v
e edges leaving those n nodes

Example. How many times does \(F \neq \{\} \) evaluate to true?

public class SFinfo {
 private node bckptr;
 private int distance;
 …
}
Directed graph
n nodes reachable from v
e edges leaving those n nodes
F ≠ {} is true n times

Harder: In total, how many times does the loop
for each neighbor w of f
find a neighbor and execute repetend?

public class SFInfo {
 private node bckPntr;
 private int distance;
 ... }

HashMap<Node, SFinfo> map
Directed graph
n nodes reachable from v
e edges leaving those n nodes
F ≠ {} is true n times
First if-statement: done e times

public class SFinfo {
 private node bckPntr;
 private int distance; …
}

HashMap<Node, SFinfo> map

How many times does
w not in S or F
evaluate to true?

S F Far off
S= { }; F= {v}; d[v]= 0;
while (F ≠ {}) {
 f= node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w]= d[f] + wgt(f, w);
 add w to F; bk[w]= f;
 } else if (d[f]+wgt (f,w) < d[w]) {
 d[w]= d[f] + wgt(f, w);
 bk[w]= f;
 }
 }
}

Directed graph
n nodes reachable from v
e edges leaving those n nodes
F ≠ {} is true n times
First if-statement: done e times

public class SFinfo {
 private node bckPntr;
 private int distance; …
}

HashMap<Node, SFinfo> map

How many times does
w not in S or F
evaluate to true?
S = \{\}\; F = \{v\}\; d[v] = 0;

while (F ≠ \{\}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 }
 else if (d[f] + wgt(f, w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
 }
}

Assume: directed graph, using adjacency list
n nodes reachable from v
e edges leaving those n nodes

Number of times (x) each part is executed/evaluated

1 x
true n x, false 1 x
n x
n x
true e x, false n x
done e x, true n-1 x, false e-(n-1) x
n-1 x
n-1 x
done e-(n-1) x, true ?
done at most e-(n-1) x
done at most e-(n-1) x
\textbf{S} \quad \textbf{F} \quad \textbf{Far off}

\texttt{S= \{ \}; \ F= \{v\}; \ d[v]= 0;}

\textbf{while} \ (F \neq \{\}) \ {\}
\texttt{f= node in F with min d value;}
\texttt{Remove f from F, add it to S;}
\texttt{for each neighbor w of f \ {\}
\texttt{\hspace{1em}if (w not in S or F) \ {\}
\texttt{\hspace{2em}d[w]= d[f] + wgt(f, w);}
\texttt{\hspace{2em}add w to F; \ bk[w]= f;}
\texttt{\hspace{1em}}}\texttt{else if (d[f]+wgt (f,w) < d[w]) \ {\}
\texttt{\hspace{2em}d[w]= d[f] + wgt(f, w);}
\texttt{\hspace{2em}bk[w]= f;}
\texttt{\hspace{1em}}}\texttt{}}

\textbf{Assume:} directed graph, using adjacency list
\texttt{n nodes reachable from v}
\texttt{e edges leaving those n nodes}

To find an upper bound on time complexity, multiply complexity of each part by the number of times its executed.

Then add them up.
S = \{\}; F = \{v\}; d[v] = 0;

while (F \neq \{\}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w] = d[f] + wgt(f, w);
 add w to F; bk[w] = f;
 } else if (d[f] + wgt(f, w) < d[w]) {
 d[w] = d[f] + wgt(f, w);
 bk[w] = f;
 }
 }
}

Assume: directed graph, using adjacency list

n nodes reachable from v
e edges leaving those n nodes

Expected time

1 * O(1)
(n+1) * O(1)
n * O(1)
n * (O(log n) + O(1))
(e+n) * O(1)
e * O(1)
(n-1) * O(1)
(n-1) * O(log n)
(e-(n-1)) * O(1)
(e-(n-1)) * O(log n)
(e-(n-1)) * O(1)
Far off

S= \{ \}; F= \{v\}; d[v]= 0;

while (F \neq \{\}) {
 f= node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 d[w]= d[f] + wgt(f, w);
 add w to F; bk[w]= f;
 }
 else if (d[f]+wgt (f,w) < d[w]) {
 d[w]= d[f] + wgt(f, w);
 bk[w]= f;
 }
 }
}

Dense graph, so e close to n*n: Line 10 gives O(n^2 \log n)

Sparse graph, so e close to n: Line 4 gives O(n \log n)