TREES

Lecture 12
CS2110 – Fall 2017
Important Announcements

- A4 is out now and due two weeks from today. Have fun, and start early!
A picture of a singly linked list:

Today: trees!
Tree Overview

Tree: data structure with nodes, similar to linked list

- Each node may have zero or more successors (children)
- Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root
A binary tree is a particularly important kind of tree where every node has at most two children.

In a binary tree, the two children are called the left and right children.
Binary trees were in A1!

You have seen a binary tree in A1.

A PhD object has one or two advisors. (Confusingly, my advisors are my “children.”)

Adrian Sampson

Luis Ceze Dan Grossman

Josep Torellas Greg Morrisett
Tree Terminology

- **The root** of the tree (no parents)
- **Left child** of M
- **Right child** of M
- **Leaves** of the tree (no children)
Tree Terminology

ancestors of B

descendants of W
Tree Terminology

left subtree of M
A node’s *depth* is the length of the path to the root.
A tree’s (or subtree’s) *height* is the length of the longest path from the root to a leaf.
Tree Terminology

Multiple trees: a *forest*.
Class for general tree nodes

class GTreeNode<T> {
 private T value;
 private List<GTreeNode<T>> children;
 //appropriate constructors, getters, setters, etc.
}

Parent contains a list of its children
Class for general tree nodes

class GTreeNode<T> {
 private T value;
 private List<GTreeNode<T>> children;
 //appropriate constructors, getters, setters, etc.
}

Java.util.List is an interface!
It defines the methods that all implementation must implement.
Whoever writes this class gets to decide what implementation to use — ArrayList? LinkedList? Etc.?
class TreeNode<T> {
 private T value;
 private TreeNode<T> left, right;

 /** Constructor: one-node tree with datum x */
 public TreeNode (T d) { datum= d; left= null; right= null; }

 /** Constr: Tree with root value x, left tree l, right tree r */
 public TreeNode (T d, TreeNode<T> l, TreeNode<T> r) {
 datum= d; left= l; right= r;
 }
}

Either might be null if the subtree is empty.

more methods: getValue, setValue, getLeft, setLeft, etc.
Binary versus general tree

In a binary tree, each node has up to two pointers: to the left subtree and to the right subtree:

- One or both could be **null**, meaning the subtree is empty
 (remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes (and they need not be ordered)

- Very useful in some situations ...
- ... one of which may be in an assignment!
An Application: Syntax Trees

(1 + (9 − 2)) * 7

A Java expression as a string.

An expression as a tree.
Applications of Tree: Syntax Trees

- Most languages (natural and computer) have a recursive, hierarchical structure
- This structure is *implicit* in ordinary textual representation
- Recursive structure can be made *explicit* by representing sentences in the language as trees: *Abstract Syntax Trees* (ASTs)
- ASTs are easier to optimize, generate code from, etc. than textual representation
- A *parser* converts textual representations to AST
Applications of Tree: Syntax Trees

In textual representation:
Parentheses show hierarchical structure

In tree representation:
Hierarchy is explicit in the structure of the tree

We’ll talk more about expressions and trees in next lecture
A binary tree is either null or an object consisting of a value, a left binary tree, and a right binary tree.
Looking at trees recursively

- Binary tree
 - Left subtree, which is a binary tree too
 - Right subtree (also a binary tree)
Looking at trees recursively

a binary tree
Looking at trees recursively

- value
- left subtree
- right subtree
Looking at trees recursively
A Recipe for Recursive Functions

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.
Recursive Functions on Binary Trees

Base case:
- empty tree (null)
- or, possibly, a leaf

Recursive case:
- Call the function on each subtree.
- Use the recursive result to build a solution for the full input.
/** Return true iff x is the datum in a node of tree t */
public static boolean treeSearch(T x, TreeNode<T> t) {
 if (t == null) return false;
 if (x.equals(t.datum)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

• Analog of linear search in lists: given tree and an object, find out if object is stored in tree
• Easy to write recursively, harder to write iteratively
/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {
 if (t == null) return false;
 if (x.equals(t.datum)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

VERY IMPORTANT!
We sometimes talk of t as the root of the tree.
But we also use t to denote the whole tree.
Some useful methods — what do they do?

```java
/** Method A ??? */
public static boolean A(Node n) {
    return n != null && n.left == null && n.right == null;
}

/** Method B ??? */
public static int B(Node n) {
    if (n == null) return -1;
    return 1 + Math.max(B(n.left), B(n.right));
}

/** Method C ??? */
public static int C(Node n) {
    if (n == null) return 0;
    return 1 + C(n.left) + C(n.right);
}
```
Some useful methods

/** Return true iff node n is a leaf */
public static boolean isLeaf(Node n) {
 return n != null && n.left == null && n.right == null;
}

/** Return height of node n (postorder traversal) */
public static int height(Node n) {
 if (n== null) return -1; //empty tree
 return 1 + Math.max(height(n.left), height(n.right));
}

/** Return number of nodes in n (preorder traversal) */
public static int numNodes(Node n) {
 if (n== null) return 0;
 return 1 + numNodes(n.left) + numNodes(n.right);
}
A binary search tree is a binary tree that is ordered and has no duplicate values. In other words, for every node:

- All nodes in the left subtree have values that are less than the value in that node, and
- All values in the right subtree are greater.

A BST is the key to making search way faster.
Binary Search Tree (BST)

Compare binary tree to binary search tree:

```plaintext
boolean searchBT(n, v):
    if n==null, return false
    if n.v == v, return true
    return searchBST(n.left, v) || searchBST(n.right, v)
```

```plaintext
boolean searchBST(n, v):
    if n==null, return false
    if n.v == v, return true
    if v < n.v
        return searchBST(n.left, v)
    else
        return searchBST(n.right, v)
```

2 recursive calls

1 recursive call
Building a BST

- To insert a new item:
 - Pretend to look for the item
 - Put the new node in the place where you fall off the tree
Building a BST

january
Building a BST

january
Building a BST

january february
Building a BST

january

february
Building a BST

january

february
Building a BST

January

February

March
Building a BST

- January
 - February
 - March
Building a BST

```
january
 /   
/     
February  March

April
```
Building a BST

January

April February March
Building a BST

january

february march

april
Building a BST

- January
 - February
 - April
 - March
Building a BST

- January
- February
- March
- April
- May
- June
- July
- August
- September
- October
- November
- December
Inserting in Alphabetical Order

april
Inserting in Alphabetical Order

april
Inserting in Alphabetical Order

april august
Inserting in Alphabetical Order

- April
- August
Inserting in Alphabetical Order

- April
- August
- December
Inserting in Alphabetical Order

- january
- february
- december
- august
- april
A balanced binary tree is one where the two subtrees of any node are about the same size.

Searching a binary search tree takes $O(h)$ time, where h is the height of the tree.

In a balanced binary search tree, this is $O(\log n)$.

But if you insert data in sorted order, the tree becomes imbalanced, so searching is $O(n)$.
Because of ordering rules for a BST, it’s easy to print the items in alphabetical order
- Recursively print left subtree
- Print the node
- Recursively print right subtree

```java
/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
    if (t == null) return;
    print(t.left);
    System.out.print(t.value);
    print(t.right);
}
```
Tree traversals

“Walking” over the whole tree is a tree traversal

- Done often enough that there are standard names

Previous example:

- in-order traversal
 - Process left subtree
 - Process root
 - Process right subtree

Note: Can do other processing besides printing

Other standard kinds of traversals

- preorder traversal
 - Process root
 - Process left subtree
 - Process right subtree

- postorder traversal
 - Process left subtree
 - Process right subtree
 - Process root

- level-order traversal
 - Not recursive: uses a queue (we’ll cover this later)
Useful facts about binary trees

Max # of nodes at depth d: 2^d

If height of tree is h
- min # of nodes: $h + 1$
- max # of nodes in tree:
 $2^0 + \ldots + 2^h = 2^{h+1} - 1$

Complete binary tree
- All levels of tree down to a certain depth are completely filled
What if we want to delete data from a BST?

A BST works great as long as it’s *balanced*.

There are kinds of trees that can *automatically* keep themselves balanced as you insert things!
Tree Summary

- A tree is a recursive data structure
 - Each node has 0 or more successors (children)
 - Each node except the root has exactly one predecessor (parent)
 - All nodes are reachable from the root
 - A node with no children (or empty children) is called a leaf

- Special case: binary tree
 - Binary tree nodes have a left and a right child
 - Either or both children can be empty (null)

- Trees are useful in many situations, including exposing the recursive structure of natural language and computer programs