Important Announcements

- A4 is out now and due two weeks from today. Have fun, and start early!

Tree Overview

- A tree: data structure with nodes, similar to linked list
 - Each node may have zero or more successors (children)
 - Each node has exactly one predecessor (parent) except the root, which has none
 - All nodes are reachable from root

Binary Trees

- A binary tree is a particularly important kind of tree where every node has at most two children.

Binary trees were in A1!

- You have seen a binary tree in A1.

- A PhD object has one or two advisors. (Confusingly, my advisors are my "children.")

A picture of a singly linked list:

```
  2  1  0

  Node object  pointer
  int value
```

Today: trees!

```
  2  1  0
    /
  4  3  1
```

Tree: data structure with nodes, similar to linked list

```
  8
 /   \
7     9
```

A tree

```
  8
 /   \
3     5
```

Not a tree

```
  8
 /   \
3     5
```

Also not a tree

```
  8
 /   \
4     3
```

List-like tree
Tree Terminology

- **the root of the tree** (no parents)
- **left child of M**
- **right child of M**
- **the leaves of the tree** (no children)

Multiple trees: *a forest.*

Class for general tree nodes

```java
class GTreeNode<T> {
    private T value;
    private List<GTreeNode<T>> children;
    // appropriate constructors, getters, setters, etc.
}
```

Parent contains a list of its children

A node’s *depth* is the length of the path to the root. A tree’s (or subtree’s) *height* is the length of the longest path from the root to a leaf.

- Depth 1, height 2.
- Depth 3, height 0.

Ancestors of B

Descendants of W
Class for general tree nodes

class GTreeNode<T> {
 private T value;
 private List<GTreeNode<T>> children;
 //appropriate constructors, getters, setters, etc.
}

Java.util.List is an interface!
It defines the methods that all implementation must implement.
Whoever writes this class gets to decide what implementation to use — ArrayList? LinkedList? Etc.?

Class for binary tree node

class TreeNode<T> {
 private T value;
 private TreeNode<T> left, right;

 /** Constructor: one-node tree with datum x */
 public TreeNode(T d) {
 datum=d; left=null; right=null;
 }

 /** Constr: Tree with root value x, left tree l, right tree r */
 public TreeNode(T d, TreeNode<T> l, TreeNode<T> r) {
 datum=d; left=l; right=r;
 }

 //more methods: getValue, setValue, getLeft, setLeft, etc.
}

Either might be null if the subtree is empty.

Binary versus general tree

In a binary tree, each node has up to two pointers: to the left subtree and to the right subtree:
- One or both could be null, meaning the subtree is empty
 (remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes (and they need not be ordered)
- Very useful in some situations ...
- ... one of which may be in an assignment!

An Application: Syntax Trees

"parsing"

(1 + (9 – 2)) * 7

A Java expression as a string.

An expression as a tree.

Applications of Tree: Syntax Trees

- Most languages (natural and computer) have a recursive, hierarchical structure
- This structure is implicit in ordinary textual representation
- Recursive structure can be made explicit by representing sentences in the language as trees:
 Abstract Syntax Trees (ASTs)
- ASTs are easier to optimize, generate code from, etc. than textual representation
- A parser converts textual representations to AST

Applications of Tree: Syntax Trees

In textual representation:
Parentheses show hierarchical structure

-34

In tree representation:
Hierarchy is explicit in the structure of the tree

We’ll talk more about expressions and trees in next lecture

[(2+3) + (5+7)]
A Tree is a Recursive Thing

A binary tree is either null or an object consisting of a value, a left binary tree, and a right binary tree.

Looking at trees recursively

A Recipe for Recursive Functions

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.
Recursive Functions on Binary Trees

Base case:
- empty tree (null)
- or, possibly, a leaf

Recursive case:
- Call the function on each subtree.
- Use the recursive result to build a solution for the full input.

Searching in a Binary Tree

```java
/** Return true if x is the datum in a node of tree t */
public static boolean treeSearch(T x, TreeNode<T> t) {
    if (t == null) return false;
    if (x.equals(t.datum)) return true;
    return treeSearch(x, t.left) || treeSearch(x, t.right);
}
```

A BST is the key to making search way faster.

Binary Search Tree (BST)

A binary search tree is a binary tree that is ordered and has no duplicate values. In other words, for every node:
- All nodes in the left subtree have values that are less than the value in that node, and
- All values in the right subtree are greater.

```java
public static int numNodes(Node n) {
    if (n == null) return 0;
    return 1 + numNodes(n.left) + numNodes(n.right);
}
```
Binary Search Tree (BST)

Compare binary tree to binary search tree:

```java
boolean searchBST(n, v):
    if n==null, return false
    if n.v == v, return true
    if v < n.v
        return searchBST(n.left, v)
    else
        return searchBST(n.right, v)
```

Building a BST

- To insert a new item:
 - Pretend to look for the item
 - Put the new node in the place where you fall off the tree

Building a BST

1. January

Building a BST

1. January
2. February

Building a BST

1. January
2. February
Building a BST

```
january
  /   
february  march
   /    
   april
```

Building a BST

```
january
  /   
february  march
   /    
   april
   /  
  june  may
     /  
   august  october
     /    
   december  november
```

Inserting in Alphabetical Order

```
```
```
```
```
```

Inserting in Alphabetical Order

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
**Inserting in Alphabetical Order**

- **April**
- **August**
- **December**

**Inserting in Alphabetical Order**

- **April**
- **August**
- **December**
  - **February**
  - **January**

**Insertion Order Matters**

- A balanced binary tree is one where the two subtrees of any node are about the same size.
- Searching a binary search tree takes $O(h)$ time, where $h$ is the height of the tree.
- In a balanced binary search tree, this is $O(\log n)$.
- But if you insert data in sorted order, the tree becomes imbalanced, so searching is $O(n)$.

**Printing contents of BST**

Because of ordering rules for a BST, it’s easy to print the items in alphabetical order:
- Recursively print left subtree
- Print the node
- Recursively print right subtree

```java
/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
if (t == null) return;
print(t.left);
System.out.print(t.value);
print(t.right);
}
```

**Tree traversals**

"Walking" over the whole tree is a tree traversal:
- Done often enough that there are standard names

Previous example:
- **In-order traversal**
  - Process left subtree
  - Process root
  - Process right subtree
- **Post-order traversal**
  - Process left subtree
  - Process right subtree
  - Process root
- **Level-order traversal**
  - Not recursive; uses a queue (we’ll cover this later)

**Useful facts about binary trees**

Max # of nodes at depth $d$: $2^d$

- If height of tree is $h$
  - $\min \ # \ of \ nodes: \ h + 1$
  - $\max \ # \ of \ nodes \ in \ tree: \ 2^0 + \cdots + 2^h = 2^{h+1} - 1$

**Complete binary tree**
- All levels of tree down to a certain depth are completely filled
Things to think about

What if we want to delete data from a BST?

A BST works great as long as it's balanced.
There are kinds of trees that can automatically keep themselves balanced as you insert things!

Tree Summary

- A tree is a recursive data structure
  - Each node has 0 or more successors (children)
  - Each node except the root has exactly one predecessor (parent)
  - All nodes are reachable from the root
  - A node with no children (or empty children) is called a leaf
- Special case: binary tree
  - Binary tree nodes have a left and a right child
  - Either or both children can be empty (null)
- Trees are useful in many situations, including exposing the recursive structure of natural language and computer programs