“Progress is made by lazy men looking for easier ways to do things.”

- Robert Heinlein
Announcements

- A3 due Friday
- Prelim next Thursday
 - Prelim conflicts: fill out CMS by Friday
 - Review section on Sunday
What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?
- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?
Constant time operation: its time doesn’t depend on the size or length of anything. Always roughly the same. Time is bounded above by some number.

Basic step:
- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)
Counting Steps

// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k+1) {
 sum = sum + k;
}

All basic steps take time 1. There are n loop iterations. Therefore, takes time proportional to n.

Statement:
sum = 0;
k = 1;
k <= n
k = k+1;
sum = sum + k;

Total steps: 3n + 3

Linear algorithm in n
Not all operations are basic steps

// Store n copies of ‘c’ in s
s = "";
// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1) {
 s = s + 'c';
}

Concatenation is not a basic step. For each k, catenation creates and fills k array elements.
String Concatenation

`s = s + “c”;` is NOT constant time.
It takes time proportional to 1 + length of s
Not all operations are basic steps

// Store n copies of ‘c’ in s
s = "";

// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k+1) {
 s = s + 'c';
}

Statement:	# times	# steps
s = ""; | 1 | 1 |
k = 1; | 1 | 1 |
k <= n | n+1 | 1 |
k = k+1; | n | 1 |
s = s + 'c'; | n | k |

Total steps: \(n*(n-1)/2 + 2n + 3 \)

Concatenation is not a basic step. For each k, catenation creates and fills k array elements.

Quadratic algorithm in n
Linear versus quadratic

```
// Store sum of 1..n in sum
sum = 0;
// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k + 1)
    sum = sum + n
```

```
// Store n copies of ‘c’ in s
s = “”;
// inv: s contains k-1 copies of ‘c’
for (int k = 1; k <= n; k = k + 1)
    s = s + ‘c’;
```

Linear algorithm

Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What’s important is that:

- One is linear in n—takes time proportional to n
- One is quadratic in n—takes time proportional to n^2
Looking at execution speed

Number of operations executed:

- $2n + 2$ ops
- $n + 2$ ops
- n ops
- n^2 ops

2n+2, n+2, n are all linear in n, proportional to n.

Constant time:

size n of the array
What do we want from a definition of “runtime complexity”?

1. Distinguish among cases for large \(n \), not small \(n \)

2. Distinguish among important cases, like
 - \(n^2 \) basic operations
 - \(n \) basic operations
 - \(\log n \) basic operations
 - 5 basic operations

3. Don’t distinguish among trivially different cases.
 - 5 or 50 operations
 - \(n \), \(n+2 \), or \(4n \) operations
Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

Intuitively, \(f(n) \) is \(O(g(n)) \) means that \(f(n) \) grows like \(g(n) \) or slower.
Prove that \((n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

Methodology:

Start with \(f(n)\) and slowly transform into \(c \cdot g(n)\):
- Use \(=\) and \(\leq\) and \(<\) steps
- At appropriate point, can choose \(N\) to help calculation
- At appropriate point, can choose \(c\) to help calculation
Prove that \((n^2 + n)\) is \(O(n^2)\)

Formal definition: \(f(n)\) is \(O(g(n))\) if there exist constants \(c > 0\) and \(N \geq 0\) such that for all \(n \geq N\), \(f(n) \leq c \cdot g(n)\)

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

\[
f(n) = 2n^2 + n \\
\leq 2n^2 + n^2 \\
= 3n^2 \\
= 3 \cdot g(n)
\]

Transform \(f(n)\) into \(c \cdot g(n)\):
- Use \(=, \leq, <\) steps
- Choose \(N\) to help calc.
- Choose \(c\) to help calc

Choose \(N = 1\) and \(c = 3\)
Prove that \(100 \, n + \log \, n \) is \(O(n) \)

Formal definition: \(f(n) \) is \(O(g(n)) \) if there exist constants \(c > 0 \) and \(N \geq 0 \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \)

\[
\begin{align*}
f(n) &= <\text{put in what } f(n) \text{ is}> \\
100 \, n + \log \, n &\leq <\text{We know } \log \, n \leq n \text{ for } n \geq 1> \\
100 \, n + n &= <\text{arithmetic}> \\
101 \, n &= <g(n) = n> \\
101 \, g(n) &= \text{Choose} \\
&\text{N = 1 and } c = 101
\end{align*}
\]
O(...) Examples

Let \(f(n) = 3n^2 + 6n - 7 \)
- \(f(n) \) is \(O(n^2) \)
- \(f(n) \) is \(O(n^3) \)
- \(f(n) \) is \(O(n^4) \)
- \(\ldots \)

\(p(n) = 4n \log n + 34n - 89 \)
- \(p(n) \) is \(O(n \log n) \)
- \(p(n) \) is \(O(n^2) \)

\(h(n) = 20 \cdot 2^n + 40n \)
- \(h(n) \) is \(O(2^n) \)

\(a(n) = 34 \)
- \(a(n) \) is \(O(1) \)

Only the *leading* term (the term that grows most rapidly) matters.

If it’s \(O(n^2) \), it’s also \(O(n^3) \) etc! However, we always use the smallest one.
Do NOT say or write $f(n) = O(g(n))$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $N \geq 0$ such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

$f(n) = O(g(n))$ is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use $=$ this way.

We know that $n+2$ is $O(n)$ and $n+3$ is $O(n)$. Suppose we use $=$

\[
\begin{align*}
n+2 &= O(n) \\
n+3 &= O(n)
\end{align*}
\]

But then, by transitivity of equality, we have $n+2 = n+3$. We have proved something that is false. Not good.
Problem-size examples

- Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th>operations</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>n log n</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>3n^2</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>Time Bound</th>
<th>Growth Rate</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$n \log n$</td>
<td>pretty good</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>
Consider two different data structures that could store your data: an array or a doubly-linked list. In both cases, let n be the size of your data structure (i.e., the number of elements it is currently storing). What is the running time of each of the following operations:

- get(i) using an array
- get(i) using a DLL
- insert(v) using an array
- insert(v) using a DLL
Java Lists

- java.util defines an interface List<E>
- implemented by multiple classes:
 - ArrayList
 - LinkedList
Search for v in b[0..]

// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
Search for v in b[0..]

// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
The Four Loopy Questions

- Does it start right?
 \[\text{Is } \{Q\} \text{ init } \{P\} \text{ true?} \]

- Does it continue right?
 \[\text{Is } \{P \land B\} \text{ S } \{P\} \text{ true?} \]

- Does it end right?
 \[\text{Is } P \land \neg B \Rightarrow R \text{ true?} \]

- Will it get to the end?
 \[\text{Does it make progress toward termination?} \]
Search for v in b[0..]

// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.

```c
int i = 0;
while (b[i] != v) {
    i = i + 1;
}
```

Each iteration takes constant time.

Worst case: b.length - 1 iterations

Linear algorithm: O(b.length)
Search for v in sorted $b[0..]$

// Store in i to truthify $b[0..i] \leq v < b[i+1..]$
// Precondition: b is sorted.

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!
Another way to search for v in b[0..]

// Store in i to truthify b[0..i] <= v < b[i..]
// Precondition: b is sorted.

pre: b sorted

post: b <= v > v

inv: b <= v sorted > v

0 i k b.length

b <= v j > v

i = -1;
k = b.length;

while (i < k-1) {
 int j = (i+k)/2;
 // i < j < k
 if (b[j] <= v) i = j;
 else k = j;
}

j = (i+k)/2
Another way to search for \(v \) in \(b[0..] \)

// Store in \(i \) to truthify \(b[0..i] \leq v < b[i..] \)
// Precondition: \(b \) is sorted.

<table>
<thead>
<tr>
<th>pre: (b)</th>
<th>(i)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0) to (b.length)</td>
<td>(k = b.length)</td>
</tr>
<tr>
<td>post: (b)</td>
<td>(<= \ v)</td>
<td>(> \ v)</td>
</tr>
<tr>
<td>0</td>
<td>(i)</td>
<td>(k)</td>
</tr>
<tr>
<td>inv: (b)</td>
<td>(<= \ v)</td>
<td>(sorted)</td>
</tr>
</tbody>
</table>

Each iteration takes constant time.

Logarithmic: \(O(\log(b.length)) \)

Worst case: \(\log(b.length) \) iterations
Another way to search for v in b[0..]

// Store in i to truthify b[0..i] <= v < b[i+1..]
// Precondition: b is sorted.

This algorithm is better than binary searches that stop when v is found.
1. Gives good info when v not in b.
2. Works when b is empty.
3. Finds last occurrence of v, not arbitrary one.
4. Correctness, including making progress, easily seen using invariant

Logarithmic: O(log(b.length))

i = 0;
k = b.length;
while (i < k-1) {
 int j = (i+k)/2;
 // i < j < k
 if (b[j] <= v) i = j;
 else k = j;
}
Dutch National Flag Algorithm
Dutch National Flag Algorithm

Dutch national flag. Swap b[0..n-1] to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of b[0..n] to truthify postcondition R:

0 n
Q: b ?

0 n
R: b reds whites blues

0 n
P1: b reds whites blues ?

0 n
P2: b reds whites ? blues
Dutch National Flag Algorithm: invariant P1

\[
\begin{array}{cccc}
0 & ? & n \\
\hline
0 & n \\
\hline
\text{R: b} & \text{reds} & \text{whites} & \text{blues} \\
\hline
0 & h & k & p & n \\
\hline
\text{P1: b} & \text{reds} & \text{whites} & \text{blues} & ? \\
\end{array}
\]

\[h = 0; k = h; p = k;\]

while (\(p \neq n \)) {
 if (b[p] blue) \(p = p+1; \)
 else if (b[p] white) {
 swap b[p], b[k];
 p = p+1; k = k+1;
 }
 else { // b[p] red
 swap b[p], b[h];
 swap b[p], b[k];
 p = p+1; h = h+1; k = k+1;
 }
}
Dutch National Flag Algorithm: invariant P2

Q: b
0
h
0
k
0
h
k
p
n
P2: b
0
? 0
? 0
n
n
n
n
R: b
reds
whites
blues
h= 0; k= h; p= n;

while (k != p) {
 if (b[k] white) k= k+1;
 else if (b[k] blue) {
 p= p-1;
 swap b[k], b[p];
 }
 else { // b[k] is red
 swap b[k], b[h];
 h= h+1; k= k+1;
 }
}
Asymptotically, which algorithm is faster?

Invariant 1

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td>0</td>
<td>h</td>
<td>k</td>
<td>p</td>
</tr>
<tr>
<td>whites</td>
<td>h</td>
<td>k</td>
<td>p</td>
<td>n</td>
</tr>
<tr>
<td>blues</td>
<td>p</td>
<td>n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

h= 0; k= h; p= k;
while (p != n) {
 if (b[p] blue) p= p+1;
 else if (b[p] white) {
 swap b[p], b[k];
 p= p+1; k= k+1;
 }
 else { // b[p] red
 swap b[p], b[h];
 swap b[p], b[k];
 p= p+1; h= h+1; k= k+1;
 }
}

Invariant 2

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td>0</td>
<td>h</td>
<td>k</td>
<td>p</td>
</tr>
<tr>
<td>whites</td>
<td>h</td>
<td>k</td>
<td>p</td>
<td>n</td>
</tr>
<tr>
<td>blues</td>
<td>p</td>
<td>n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

h= 0; k= h; p= n;
while (k != p) {
 if (b[k] white) k= k+1;
 else if (b[k] blue) {
 p= p-1;
 swap b[k], b[p];
 }
 else { // b[k] is red
 swap b[k], b[h];
 h= h+1; k= k+1;
 }
}

}
Asymptotically, which algorithm is faster?

Invariant 1

<table>
<thead>
<tr>
<th>0</th>
<th>h</th>
<th>k</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>reds</td>
<td>whites</td>
<td>blues</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

might use 2 swaps per iteration

```c
if (b[p] blue)  p= p+1;
else if (b[p] white) {
    swap b[p], b[k];
    p= p+1; k= k+1;
}

swap b[p], b[h];
swap b[p], b[k];
p= p+1; h= h+1; k= k+1;
```  

uses at most 1 swap per iteration

```c
if (b[k] white)  k= k+1;
else if (b[k] blue) {
    p= p-1;
}

k= k+1;
p= p-1;

h= h+1; k= k+1;
```  

These two algorithms have the same asymptotic running time (both are \(O(n)\))