“Progress is made by lazy men looking for easier ways to do things.”

- Robert Heinlein

ASYMPTOTIC COMPLEXITY

Lecture 10

CS2110 – Fall 2017

WHAT MAKES A GOOD ALGORITHM?

Suppose you have two possible algorithms that do the same thing; which is better?

- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?

BASIC STEP: ONE “CONSTANT TIME” OPERATION

Constant time operation: its time doesn’t depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

- **Basic step:**
 - Input/output of a number
 - Access value of primitive-type variable, array element, or object field
 - Assign to variable, array element, or object field
 - Do one arithmetic or logical operation
 - Method call (not counting argument evaluation and execution of method body)

COUNTING STEPS

// Store sum of 1..n in sum
sum = 0;

// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k + 1)
{
 sum = sum + k;
}

All basic steps take time 1.
There are n loop iterations.
Therefore, takes time proportional to n.

NOT ALL OPERATIONS ARE BASIC STEPS

// Store n copies of 'c' in s
s = "";

// inv: s contains k-1 copies of 'c'
for (int k = 1; k <= n; k = k + 1)
{
 s = s + 'c';
}

Concatenation is not a basic step. For each k, concatenation creates and fills k array elements.

STRING CONCATENATION

s = s + "c"; is NOT constant time.

It takes time proportional to 1 + length of s.
Not all operations are basic steps

```java
// Store n copies of 'c' in s
s = "";

// inv: s contains k-1 copies of 'c'
for (int k = 1; k <= n; k = k+1){
    s = s + 'c';
}
```

Concatenation is not a basic step. For each k, concatenation creates and fills k array elements.

Linear versus quadratic

```java
// Store sum of 1..n in sum
sum = 0;

// inv: sum = sum of 1..(k-1)
for (int k = 1; k <= n; k = k+1)
    sum = sum + n;
```

One is linear in n—takes time proportional to n
One is quadratic in n—takes time proportional to \(n^2 \)

Looking at execution speed

```
Number of operations executed

\( 2n + 2 \), \( n + 2 \), \( n \) are all linear in n, proportional to n

\( n^2 \) ops
\( 2n + 2 \) ops
\( n + 2 \) ops
\( n \) ops
```

What do we want from a definition of “runtime complexity”?

```
1. Distinguish among cases for large n, not small n
2. Distinguish among important cases, like
   - \( n^2 \) basic operations
   - \( n \) basic operations
   - \( \log n \) basic operations
   - 5 basic operations
3. Don’t distinguish among trivially different cases.
   - 5 or 50 operations
   - \( n \), \( n + 2 \), or \( 4n \) operations
```

"Big O" Notation

```
Formal definition: \( f(n) \) is \( O(g(n)) \) if there exist constants \( c > 0 \) and \( N \geq 0 \) such that for all \( n \geq N \), \( f(n) \leq c \cdot g(n) \).
```

Intuitively, \(f(n) \) is \(O(g(n)) \) means that \(f(n) \) grows like \(g(n) \) or slower

Prove that \((n^2 + n) \) is \(O(n^2) \)

```
Formal definition: \( f(n) \) is \( O(g(n)) \) if there exist constants \( c > 0 \) and \( N \geq 0 \) such that for all \( n \geq N \), \( f(n) \leq c \cdot g(n) \).
```

Example: Prove that \((2n^2 + n) \) is \(O(n^2) \)

Methodology:

- Start with \(f(n) \) and slowly transform into \(c \cdot g(n) \):
 - Use equal \(\Leftrightarrow \) and \(\leq \) steps
 - At appropriate point, can choose \(N \) to help calculation
 - At appropriate point, can choose \(c \) to help calculation
Prove that \((n^2 + n)\) is \(O(n^2)\)

<table>
<thead>
<tr>
<th>Formal definition: (f(n) = O(g(n))) if there exist constants (c > 0) and (N \geq 0) such that for all (n \geq N), (f(n) \leq c \cdot g(n))</th>
</tr>
</thead>
</table>

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

<table>
<thead>
<tr>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq)</td>
</tr>
<tr>
<td>(2n^2 + n)</td>
</tr>
<tr>
<td>(\leq)</td>
</tr>
<tr>
<td>(3n^2)</td>
</tr>
<tr>
<td>(\leq)</td>
</tr>
<tr>
<td>(3 \cdot g(n))</td>
</tr>
</tbody>
</table>

Choose \(N = 1\) and \(c = 3\)

Prove that \(100n + \log n\) is \(O(n)\)

<table>
<thead>
<tr>
<th>Formal definition: (f(n) = O(g(n))) if there exist constants (c > 0) and (N \geq 0) such that for all (n \geq N), (f(n) \leq c \cdot g(n))</th>
</tr>
</thead>
</table>

Example: Prove that \((2n^2 + n)\) is \(O(n^2)\)

<table>
<thead>
<tr>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq)</td>
</tr>
<tr>
<td>(100 n + \log n)</td>
</tr>
<tr>
<td>(\leq)</td>
</tr>
<tr>
<td>(100 n + n)</td>
</tr>
<tr>
<td>(\leq)</td>
</tr>
<tr>
<td>(101 n)</td>
</tr>
<tr>
<td>(\leq)</td>
</tr>
<tr>
<td>(101 \cdot g(n))</td>
</tr>
</tbody>
</table>

Choose \(N = 1\) and \(c = 101\)

\(O(\ldots)\) Examples

Let \(f(n) = 3n^2 + 6n - 7\)

- \(f(n)\) is \(O(n^2)\)
- \(f(n)\) is \(O(n^3)\)
- \(f(n)\) is \(O(n^4)\)

\(p(n) = 4n \log n + 34n - 89\)

- \(p(n)\) is \(O(n \log n)\)
- \(p(n)\) is \(O(n^2)\)
- \(p(n)\) is \(O(n^3)\)

\(h(n) = 20 \cdot 2^n + 40n\)

- \(h(n)\) is \(O(2^n)\)

\(a(n) = 34\)

- \(a(n)\) is \(O(1)\)

Do NOT say or write \(f(n) = O(g(n))\)

<table>
<thead>
<tr>
<th>Formal definition: (f(n) = O(g(n))) if there exist constants (c > 0) and (N \geq 0) such that for all (n \geq N), (f(n) \leq c \cdot g(n))</th>
</tr>
</thead>
</table>

\(f(n)\) is \(O(g(n))\) is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use = this way.

We know that \(n+2 = O(n)\) and \(n+3 = O(n^2)\). Suppose we use

\[n+2 = O(n) \]
\[n+3 = O(n^2) \]

But then, by transitivity of equality, we have \(n+2 = n+3\). We have proved something that is false. Not good.

Problem-size examples

- Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th>operations</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>(n \log n)</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>(n^2)</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>(3n^2)</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>(n^3)</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>(2^n)</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>

Commonly Seen Time Bounds

\(O(1)\)	constant	excellent
\(O(\log n)\)	logarithmic	excellent
\(O(n)\)	linear	good
\(O(n \log n)\)	\(n \log n\)	pretty good
\(O(n^2)\)	quadratic	maybe OK
\(O(n^3)\)	cubic	maybe OK
\(O(2^n)\)	exponential	too slow
Search for v in b[0..]

returns the index of the first occurrence of v in array b
* Precondition: b is sorted **

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

 Practice doing this!

Another way to search for v in b[0..]

returns the index of the first occurrence of v in array b
* Precondition: b is sorted, b contains v **

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

 Practice doing this!

The Four Loopy Questions

- Does it start right? Is (Q) init (P) true?
- Does it continue right? Is (P && B) S (P) true?
- Does it end right? Is P && B => R true?
- Will it get to the end? Does it make progress toward termination?

Search for v in b[0..]

returns the index of the first occurrence of v in array b
* Precondition: b is sorted **

Methodology:
1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

 Practice doing this!

Search for v in b[0..]

returns the index of the first occurrence of v in array b
* Precondition: b is sorted **

Pre: b sorted b.length

post: b < v ≥ v

inv: b < v sorted b.length

\[i = 0;\]
\[\text{while } (b[i] < v) \{\]
\[i = i + 1;\]
\}\n
Each iteration takes constant time.
Worst case: b.length iterations

Linear algorithm: O(b.length)

Search for v in b[0..]

returns the index of the first occurrence of v in array b
* Precondition: b is sorted **

Pre: b sorted b.length

post: b < v ≥ v

inv: b < v sorted b.length

\[j = 0;\]
\[k = b.length;\]
\[\text{while } (i < k) \{\]
\[j = (k + i) / 2;\]
\[b[j] < v \Rightarrow i = j; \]
\[k = j;\]
\}\n
Each iteration takes constant time.
Worst case: log(b.length) iterations

Logarithmic: O(log(b.length))
Another way to search for \(v \) in \(b[0..] \)

** returns the index of the first occurrence of \(v \) in array \(b \)
* Precondition: \(b \) is sorted

This algorithm is better than binary searches that stop when \(v \) is found.
1. Gives good info when \(v \) not in \(b \).
2. Works when \(b \) is empty.
3. Finds first occurrence of \(v \), not arbitrary one.
4. Correctness, including making progress, easily seen using invariant

Logarithmic: \(O(\log(\text{b.length})) \)

Dutch National Flag Algorithm

Dutch national flag: Swap \(b[0..n-1] \) to put the reds first, then the whites, then the blues. That is, given precondition \(Q \), swap values of \(b[0..n] \) to trutify postcondition \(R \):

\[
\begin{array}{c|cccc}
 Q: & b & \text{reds} & \text{whites} & \text{blues} \\
 \hline
 \text{P1:} & b & \text{reds} & \text{whites} & ? & \text{blues} \\
 \text{P2:} & b & \text{reds} & ? & \text{whites} & \text{blues} \\
\end{array}
\]

Use inv \text{P1}:
- at most 2 swaps per iteration.
Use inv \text{P2}:
- at most 1 swap per iteration.

Which Algorithm is better?

<table>
<thead>
<tr>
<th>Invariant 1</th>
<th>Invariant 2</th>
</tr>
</thead>
</table>
| \begin{array}{c|cccc}
 Q: & b & \text{reds} & \text{whites} & \text{blues} \\
 \hline
 \text{P1:} & b & \text{reds} & \text{whites} & ? & \text{blues} \\
 \text{P2:} & b & \text{reds} & ? & \text{whites} & \text{blues} \\
\end{array} & \begin{array}{c|cccc}
 Q: & b & \text{reds} & \text{whites} & ? & \text{blues} \\
 \hline
 \text{P1:} & b & \text{reds} & \text{whites} & ? & \text{blues} \\
\end{array} |
| \begin{array}{c}
 h=0; k=h; p=n; \text{while (} k!=p \text{)} \{ \\
 \begin{array}{c}
 \text{if (} b[k] \text{ white) } k=k+1; \\
 \text{else if (} b[p] \text{ blue) } \\
 \begin{array}{c}
 p=p+1; \\
 \text{swap} \ b[k], \ b[p]; \\
 \end{array}
 \} \\
 \text{else} \{ // b[k] is red \\
 \begin{array}{c}
 \text{swap} \ b[k], \ b[h]; \\
 h=h+1; k=k+1; \\
 \end{array}
 \}
 \}
\end{array} & \begin{array}{c}
 h=0; k=h; p=n; \text{while (} k!=p \text{)} \{ \\
 \begin{array}{c}
 \text{if (} b[p] \text{ blue) } p=p+1; \\
 \text{else if (} b[p] \text{ white) } \\
 \begin{array}{c}
 p=p+1; k=k+1; \\
 \text{swap} \ b[h], \ b[p]; \\
 \end{array}
 \} \\
 \text{else} \{ // b[p] is red \\
 \begin{array}{c}
 \text{swap} \ b[p], \ b[h]; \\
 \text{swap} \ b[p], \ b[k]; \\
 p=p+1; b[h]=b[k]; \\
 \end{array}
 \}
 \}
 \}
\end{array} |

Dutch National Flag Algorithm: invariant \text{P1}

\[
\begin{array}{c|cccc}
 Q: & b & \text{reds} & \text{whites} & \text{blues} \\
 \hline
 \text{P1:} & b & \text{reds} & \text{whites} & ? & \text{blues} \\
 \text{P2:} & b & \text{reds} & ? & \text{whites} & \text{blues} \\
\end{array}
\]

\[
\begin{array}{c|cccc}
 Q: & b & \text{reds} & \text{whites} & \text{blues} \\
 \hline
 \text{P1:} & b & \text{reds} & \text{whites} & ? & \text{blues} \\
\end{array}
\]

Use inv \text{P1}:
- at most 2 swaps per iteration.
Use inv \text{P2}:
- at most 1 swap per iteration.