Review: Big O definition

f(n) is $O(g(n))$

iff

There exists $c > 0$ and $N > 0$
such that:

$f(n) \leq c \times g(n)$ for $n \geq N$
Example: \(n+6 \) is \(\mathcal{O}(n) \)

\[n + 6 \quad \text{---this is } f(n) \]
\[\leq \quad \text{<if } 6 \leq n, \text{ write as}> \]
\[n + n \]
\[= \quad \text{<arith> } \]
\[2n \]
\[= \quad \text{<choose } c = 2\text{> } \]
\[c\cdot n \quad \text{---this is } c \cdot g(n) \]

So choose \(c = 2 \) and \(N = 6 \)

\(f(n) \) is \(\mathcal{O}(g(n)) \): There exist \(c > 0, N > 0 \) such that:

\[f(n) \leq c \cdot g(n) \text{ for } n \geq N \]
Review: Big O

Is used to classify algorithms by how they respond to changes in input size n.

Important vocabulary:
- Constant time: $O(1)$
- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time: $O(n^2)$
- Exponential time: $O(2^n)$
Review: Big O

<table>
<thead>
<tr>
<th>Expression</th>
<th>Is</th>
<th>Big O Expression</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log(n) + 20)</td>
<td>is</td>
<td>(O(\log(n)))</td>
<td>(\log(n))</td>
</tr>
<tr>
<td>(n + \log(n))</td>
<td>is</td>
<td>(O(n))</td>
<td>(\text{linear})</td>
</tr>
<tr>
<td>(n/2) and (3*n)</td>
<td>are</td>
<td>(O(n))</td>
<td></td>
</tr>
<tr>
<td>(n \times \log(n) + n)</td>
<td>is</td>
<td>(O(n \times \log(n)))</td>
<td></td>
</tr>
<tr>
<td>(n^2 + 2*n + 6)</td>
<td>is</td>
<td>(O(n^2))</td>
<td>(\text{quadratic})</td>
</tr>
<tr>
<td>(n^3 + n^2)</td>
<td>is</td>
<td>(O(n^3))</td>
<td>(\text{cubic})</td>
</tr>
<tr>
<td>(2^n + n^5)</td>
<td>is</td>
<td>(O(2^n))</td>
<td>(\text{exponential})</td>
</tr>
</tbody>
</table>
Merge Sort
/** Sort b[h..k]. */
public static void mS(Comparable[] b, int h, int k) {
 if (h >= k) return;
 int e = (h+k)/2;
 mS(b, h, e);
 mS(b, e+1, k);
 merge(b, h, e, k);
}

mS is mergeSort for readability
Runtime of merge sort

/** Sort b[h..k]. */
public static void mS(Comparable[] b, int h, int k) {
 if (h >= k) return;
 int e = (h+k)/2;
mS(b, h, e);
mS(b, e+1, k);
merge(b, h, e, k);
}

mS is mergeSort for readability

- We will count the number of comparisons mS makes
- Use T(n) for the number of array element comparisons that mS makes on an array segment of size n
/** Sort b[h..k]. */
public static void mS(Comparable[] b, int h, int k) {
 if (h >= k) return;
 int e = (h+k)/2;
 mS(b, h, e);
 mS(b, e+1, k);
 merge(b, h, e, k);
}

Use $T(n)$ for the number of array element comparisons that mergeSort makes on an array of size n
/** Sort b[h..k]. */
public static void mS(Comparable[] b, int h, int k) {
 if (h >= k) return;
 int e = (h+k)/2;
 mS(b, h, e); // T(e+1-h) comparisons = T(n/2)
 mS(b, e+1, k); // T(k-e) comparisons = T(n/2)
 merge(b, h, e, k); // How long does merge take?
}

Runtime of merge sort

Merge Sort
Runtime of merge

pseudocode for merge

```java
/** Pre: b[h..e] and b[e+1..k] are already sorted */
merge(Comparable[] b, int h, int e, int k)
```

Copy both segments

```java
While both copies are non-empty
```

Compare the first element of each segment
Set the next element of b to the smaller value
Remove the smaller element from its segment

One comparison, one add, one remove

k-h loops must empty one segment

Runtime is $O(k-h)$
/** Sort b[h..k]. */
public static void mS(Comparable[] b, int h, int k) {
 if (h >= k) return;
 int e = (h+k)/2;
 mS(b, h, e); // T(e+1-h) comparisons = T(n/2)
 mS(b, e+1, k); // T(k-e) comparisons = T(n/2)
 merge(b, h, e, k); // O(k-h) comparisons = O(n)
}
Runtime

We determined that

\[T(1) = 0 \]
\[T(n) = 2T(n/2) + n \quad \text{for } n > 1 \]

We will prove that

\[T(n) = n \log_2 n \quad \text{(or } n \log n \text{ for short)} \]
Recursion tree

merge time at level

\[n = n \]

\[(n/2)^2 = n \]

\[(n/4)^4 = n \]

\[(n/2)^2 = n \]

\[(n/4)^4 = n \]

Ig n levels * n comparisons is \(O(n \log n) \)

Merge Sort
Proof by induction

To prove \(T(n) = n \lg n \), we can assume true for smaller values of \(n \) (like recursion)

\[
T(n) = 2T(n/2) + n
\]

\[
= 2(n/2)\lg(n/2) + n
\]

\[
= n(\lg n - \lg 2) + n
\]

\[
= n(\lg n - 1) + n
\]

\[
= n \lg n - n + n
\]

\[
= n \lg n
\]

Property of logarithms

\[\log_2 2 = 1 \]
Heap Sort
Very simple idea:
1. Turn the array into a max-heap
2. Pull each element out

```java
/** Sort b */
public static void heapSort(Comparable[] b) {
    heapify(b);
    for (int i = b.length - 1; i >= 0; i--) {
        b[i] = poll(b, i);
    }
}
```
Heap Sort

```java
/** Sort b */
public static void heapSort(Comparable[] b) {
    heapify(b);
    for (int i = b.length-1; i >= 0; i--) {
        b[i] = poll(b, i);
    }
}
```

Why does it have to be a max-heap?
/** Sort b */
public static void heapSort(Comparable[] b) {
 heapify(b);
 for (int i = b.length - 1; i >= 0; i--) {
 b[i] = poll(b, i);
 }
}

Heap Sort runtime

Total runtime:
O(n lg n) + n*O(lg n) = O(n lg n)