Practice with the second loopy question

Introduction

We practice finding a loop condition B by using the second loopy question: Is ! $\mathrm{B} \& \& \mathrm{P}=>\mathrm{R}$ true? Thus, we look for $!B$ that makes $!B \& \& P=>R$ true and complement ! B to get B .

Here's the invariant P and postcondition for our first example.

! B \&\& P implies R
P : s is the sum of $m . . k-1$ and $m \leq k \leq n$
R : s is the sum of m..n-1
Knowing that P is true, and doing some pattern matching with P and R , we see that R will be true if $\mathrm{k}=\mathrm{n}$. Therefore, ! B is $\mathrm{k}=\mathrm{n}$, so the loop condition B is $\mathrm{k}!=\mathrm{n}$. Looking at the restriction on k in invariant P , we can write the loop condition at $\mathrm{k}<\mathrm{n}$ if we want. Thus, we use either

$$
\text { while }(\mathrm{k}!=\mathrm{n})\{\ldots\} \quad \text { or } \quad \text { while }(\mathrm{k}<\mathrm{n})\{\ldots\}
$$

A second example

Here are the invariant and postcondition for a loop to calculate the minimum value in array segment $\mathrm{b}[0 . . \mathrm{n}-1]$:

$$
\begin{aligned}
& \text { P: } v=\text { minimum of } b[0 . . k-1] \text { and } 0 \leq k \leq n \\
& R: v=\text { minimum of } b[0 . . n-1]
\end{aligned}
$$

Using reasoning like we did the first example, you can see that we get the same answer for B as in the previous example.

$$
\text { while }(\mathrm{k}!=\mathrm{n})\{\ldots\} \quad \text { or } \quad \text { while }(\mathrm{k}<\mathrm{n})\{\ldots\}
$$

Computing $z=\mathbf{b}^{\wedge} \mathbf{c}$

Here are the invariant and postcondition for a loop to store $b^{\wedge} \mathrm{c}$ in z , given $\mathrm{c} \geq 0$:

$$
\begin{aligned}
& \text { P: } b^{\wedge} c=z^{*} x^{\wedge} y \text { and } y \geq 0 \\
& R: z=b^{\wedge} c
\end{aligned}
$$

Again doing pattern matching, we see that R will be true when P is true and $x^{\wedge} y=1$. That last formula, $x^{\wedge} y=1$, is true, when $y=0$. So our loop condition is $y \neq 0$:
while $(y!=0)\{\ldots\}$

Exercises

In the two examples below, find the loop condition. Answers are at the end of the pdf script for this video.

1. $\mathrm{P}: \mathrm{s}$ is the sum of $\mathrm{k} . . \mathrm{n}-1$ and $\mathrm{m} \leq \mathrm{k} \leq \mathrm{n}$
R : s is the sum of $m . . n-1$
2. $\mathrm{P}: \mathrm{v}=$ minimum of $\mathrm{b}[\mathrm{k} . . \mathrm{n}]$ and $0 \leq \mathrm{k} \leq \mathrm{n}$ $R: v=$ minimum of $b[0 . . n]$ and $0 \leq k \leq n$

Answers

In the first exercise, doing pattern matching on P and R, we see that $k=m$ is needed. Therefore the loop condition is $\mathrm{k}!=\mathrm{m}$. This can be written as $\mathrm{m}<\mathrm{k}$ if you want, since $\mathrm{m} \leq \mathrm{k} \leq \mathrm{n}$:

$$
\text { while }(\mathrm{k}!=\mathrm{m})\{\ldots\} \quad \text { or } \quad \text { while }(\mathrm{m}<\mathrm{k})\{\ldots\}
$$

In the second exercise, pattern matching on P and R , we see that $\mathrm{k}=0$ is needed. Therefore, the loop condition condition is $k!=0$. This can be written as $0<k$ if you want, since $0 \leq k \leq n$:

While $(\mathrm{k}!=0)\{\ldots\} \quad$ or while $(\mathrm{m}<\mathrm{k})\{\ldots\}$

