Prelim 1 tonight!

5:30 prelim is very crowded. You HAVE to follow these directions:

1. Students taking the normal 5:30 prelim (not the quiet room) and whose last names begin with A through Da MUST go to Phillips 101.

2. All other 5:30 students, go to Olin 155. You will stay there or be directed to another Olin room.

3. All 7:30 students go to Olin 155; you will stay there or be directed to another Olin room.

4. EVERYONE: Bring your Cornell id card. You will need it to get into the exam room.
Important Announcements

- A4 will be posted this weekend
- Mid-semester TA evaluations are coming up; please participate! Your feedback will help our staff improve their teaching ---this semester.
Tree Overview

Tree: data structure with nodes, similar to linked list

- Each node may have zero or more *successors* (children)
- Each node has exactly one *predecessor* (parent) except the *root*, which has none
- All nodes are reachable from *root*

Binary tree: tree in which each node can have at most two children: a left child and a right child

![General tree](image1)

![Binary tree](image2)

![Not a tree](image3)

![List-like tree](image4)
Binary trees were in A1!

You have seen a binary tree in A1.

A PhD object phd has one or two advisors. Here is an intellectual ancestral tree!

```
        phd
       /   \
      ad1   ad2
     /     /   \   \
    ad1   ad2   ad1
```
Tree terminology

M: root of this tree
G: root of the left subtree of *M*
B, H, J, N, S: leaves *(their set of children is empty)*
N: left child of *P*; *S*: right child of *P*
P: parent of *N*
M and *G*: ancestors of *D*
P, N, S: descendants of *W*
J is at depth 2 (i.e. length of path from root = no. of edges)
W is at height 2 (i.e. length of longest path to a leaf)
A collection of several trees is called a ...?
class TreeNode<T> {
 private T datum;
 private TreeNode<T> left, right;

 /** Constructor: one-node tree with datum x */
 public TreeNode(T d) { datum = d; left = null; right = null; }

 /** Constr: Tree with root value x, left tree l, right tree r */
 public TreeNode(T d, TreeNode<T> l, TreeNode<T> r) {
 datum = d; left = l; right = r;
 }
}

more methods: getValue, setValue, getLeft, setLeft, etc.
Binary versus general tree

In a binary tree, each node has up to two pointers: to the left subtree and to the right subtree:

- One or both could be **null**, meaning the subtree is empty (remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes (and they need not be ordered)

- Very useful in some situations ...
- ... one of which may be in an assignment!
Class for general tree nodes

class GTreeNode<T> {
 private T datum;
 private List<GTreeNode<T>> children;
 // appropriate constructors, getters, setters, etc.
}

Parent contains a list of its children
Class for general tree nodes

```java
class GTreeNode<T> {
    private T datum;
    private List<GTreeNode<T>> children;
    //appropriate constructors, getters, setters, etc.
}
```

Java.util.List is an interface!
It defines the methods that all implementation must implement.
Whoever writes this class gets to decide what implementation to use — ArrayList? LinkedList? Etc.?
Applications of Tree: Syntax Trees

- Most languages (natural and computer) have a recursive, hierarchical structure.

- This structure is *implicit* in ordinary textual representation.

- Recursive structure can be made *explicit* by representing sentences in the language as trees: Abstract Syntax Trees (ASTs).

- ASTs are easier to optimize, generate code from, etc. than textual representation.

- A parser converts textual representations to AST.
Applications of Tree: Syntax Trees

In textual representation:
Parentheses show hierarchical structure

In tree representation:
Hierarchy is explicit in the structure of the tree

We’ll talk more about expressions and trees in next lecture
Recursion on trees

Trees are defined recursively:

A **binary tree** is either

(1) empty

or

(2) a value (called the root value),

a left **binary tree**, and a right **binary tree**
Recursion on trees

Trees are defined recursively, so recursive methods can be written to process trees in an obvious way.

Base case
- empty tree (null)
- leaf

Recursive case
- solve problem on each subtree
- put solutions together to get solution for full tree
Class for binary tree nodes

Class BinTreeNode\(<T>\) {
 private T datum;
 private BinTreeNode\(<T>\) left;
 private BinTreeNode\(<T>\) right;
 //appropriate constructors, getters,
 //setters, etc.
}
/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {
 if (t == null) return false;
 if (x.equals(t.datum)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

• Analog of linear search in lists:
 given tree and an object, find out if object is stored in tree
• Easy to write recursively, harder to write iteratively
/** Return true iff x is the datum in a node of tree t */
public static boolean treeSearch(T x, TreeNode<T> t) {
 if (t == null) return false;
 if (x.equals(t.datum)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

VERY IMPORTANT!
We sometimes talk of t as the root of the tree.
But we also use t to denote the whole tree.
Binary Search Tree (BST)

If the tree data is *ordered and has no duplicate values*:
- in every subtree,
 - All *left* descendents of a node come *before* the node
 - All *right* descendents of a node come *after* the node

Search can be made *MUCH* faster

```java
/** Return true iff x if the datum in a node of tree t. 
   * Precondition: node is a BST and all data are non-null */
boolean treeSearch (int x, TreeNode<Integer> t) {
    if (t == null) return false;
    if (x < t.datum) return treeSearch(x, t.left);
    if (x == t.datum) return true;
    return treeSearch(x, t.right);
}
```
Building a BST

- To insert a new item
 - Pretend to look for the item
 - Put the new node in the place where you fall off the tree
- This can be done using either recursion or iteration
- Example
 - Tree uses alphabetical order
 - Months appear for insertion in calendar order
What can go wrong?

A BST makes searches very fast, unless...

- Nodes are inserted in increasing order
- In this case, we’re basically building a linked list (with some extra wasted space for the left fields, which aren’t being used)

BST works great if data arrives in random order
Because of ordering rules for a BST, it’s easy to print the items in alphabetical order

- Recursively print left subtree
- Print the node
- Recursively print right subtree

```java
/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
    if (t == null) return;
    print(t.left);
    System.out.print(t.datum);
    print(t.right);
}
```
Tree traversals

“Walking” over the whole tree is a tree traversal

- Done often enough that there are standard names

Previous example:
in-order traversal

- Process left subtree
- Process root
- Process right subtree

Note: Can do other processing besides printing

Other standard kinds of traversals

- preorder traversal
 - Process root
 - Process left subtree
 - Process right subtree

- postorder traversal
 - Process left subtree
 - Process right subtree
 - Process root

- level-order traversal
 - Not recursive uses a queue.
 We discuss later
Some useful methods

```java
/** Return true iff node t is a leaf */
public static boolean isLeaf(TreeNode<T> t) {
    return t != null && t.left == null && t.right == null;
}

/** Return height of node t (postorder traversal) */
public static int height(TreeNode<T> t) {
    if (t == null) return -1; // empty tree
    return 1 + Math.max(height(t.left), height(t.right));
}

/** Return number of nodes in t (postorder traversal) */
public static int numNodes(TreeNode<T> t) {
    if (t == null) return 0;
    return 1 + numNodes(t.left) + numNodes(t.right);
}
```
Useful facts about binary trees

Max # of nodes at depth d: 2^d

If height of tree is h
- min # of nodes: $h + 1$
- max # of nodes in tree: $2^0 + \ldots + 2^h = 2^{h+1} - 1$

Complete binary tree
- All levels of tree down to a certain depth are completely filled
Things to think about

What if we want to delete data from a BST?

A BST works great as long as it’s balanced

How can we keep it balanced? This turns out to be hard enough to motivate us to create other kinds of trees
A tree is a recursive data structure

- Each node has 0 or more successors (children)
- Each node except the root has exactly one predecessor (parent)
- All nodes are reachable from the root
- A node with no children (or empty children) is called a leaf

Special case: binary tree

- Binary tree nodes have a left and a right child
- Either or both children can be empty (null)

Trees are useful in many situations, including exposing the recursive structure of natural language and computer programs.