Recitation 5

Loop Invariants and Prelim Review

Four loopy questions

//Precondition
Initialization:
// invariant: P
while (B) { S }

1. Does it start right?
 Does initialization make invariant P true?

2. Does it stop right?
 Does P and !B imply the desired result?

3. Does repetend S make progress toward termination?

4. Does repetend S keep invariant P true?

Add elements backwards

Precondition

Invariant

Postcondition

Add elements backwards

INV: b

INV: b

INV: b

INV: b

Add elements backwards

int s = 0;
int h = b.length-1;
while (h > 0) {
 s= s + b[h];
 h--;
}

int s = 0;
int h = b.length-1;
while (h >= 0) {
 s= s + b[h];
 h = h - 2;
}
Add elements backwards

```
int s = 0;
int h = 0;
while (h >= 0) {
    s = s + b[h];
    h--;
}
```

INV: \(s = \sum h \)

1. Does it start right?
2. Does it stop right?
3. Does it keep the invariant true?
4. Does it make progress toward termination?

Linear search time

Linear search for \(v \) in an array \(b \) of length \(n \)

```
b[h] ???
```

worst-case time. \(v \) is not in \(b[0..n-1] \), so linear search has to look at every element. Takes time proportional to \(n \).

expected (average) case time. If you look at all possibilities where \(v \) could be and average the number of elements linear search has to look at, you would get close to \(n/2 \). Still time proportional to \(n \).

Binary search time (b[0..n-1] is sorted)

```
h= -1; t= n;
// invariant: P (below)
while (h < t-1) {
    e= (h+t)/2;
    if (b[e] <= v) h= e;
    else t= e;
}
```

inv P: \(b[h..t-1] \) starts out with \(n \) elements in it.

Each iteration cuts size of \(b[h+1..t-1] \) in half.

worst-case and expected case time: \(\log n \)

Selection sort of b[0..n-1]

```
h= 0;
// invariant: P (below)
while (h < n) {
    Swap b[h] with min value in b[h..n-1];
    h= h+1;
}
```

To find the min value of \(b[h..n-1] \) takes time proportional to \(n - h \).

\[n + (n-1) + \ldots + 3 + 2 + 1 = n (n-1) / 2 \]

worst-case and average case time: proportional to \(n^2 \)
Quicksort of b[0..n-1]

** Prelim Review **

`partition(b, h, k)` takes time proportional to size of `b[h..k]`

Best-case time: `partition` makes both sides equal length

- time `n` to partition
- time `n` to partition
- time `n` to partition

Depth: proportional to log `n`
Therefore: time `n log n`

Worst-case time: `partition` makes one side empty

- time `n` to partition
- time `n-1` to partition
- time `n-2` to partition

Depth: proportional to `n`
Therefore: time `n^2`

Someone proved that the average or expected time for quicksort is `n log n`

```
/** Sort b[h..k] */
void QS(int[] b, int h, int k) {
    if (b[h..k] size < 2) return;
    j = partition(b, h, k);
    // b[h..j-1] <= b[j] <= b[j+1..k]
    QS(b, h, j-1);
    QS(b, j+1, k)
}
```

What method calls are legal

Animal an; an.m(args);

The . is computation.
Stores something in an.

Legal ONLY if Java can guarantee that method `m` exists. How to guarantee?

- `n` must be declared in Animal or inherited. Why?
- Someone might write a subclass `C` of Animal that does not have `m` declared in it, create an object of C, store it in an. Then method `m` would not exist.
- You know already from lecture 4 on class `Object`, overriding `toString()`, and the bottom-up/overriding rule that the overriding method is called.

Exception handling

```
private static double m(int x) {
    int y = x;
    try {
        y = 5/x;
        return 5/(x+2);
    } catch (NullPointerException e) {
        System.out.println("null");
    } catch (RuntimeException e) {
        y = 5/(x+1);
    } return 1/x;
}
```
Quicksort

0 1 2 3 5 4 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7