
10/6/15

1

Recitation 7

Hashing

1

Set
Sets

Set<E>
add(E ob);
remove(E ob);
contains(E ob);
isEmpty()
size()
… (a few more)

Set: collection of distinct objects

2

Implementing a set in an array

b[0..n-1] contains the values in the set

Have to search through the list
linearly to find values

Have to shift all values down

method expected time

add O(n)

contains O(n)

remove O(n)

Sets

VA NY CA
0 1 2 3 4

n 3

b

3

Hashing — an implementation of a Set
Hashing

value int

Idea: Use a hash function to tell where to put a value

b.length

b VA NY CA

0 1 2 3 4

Possible hash function for an object: its address in memory
(not always good, explain later)

Hash function
mod b.length

4

Hashing
Hashing

add(“VA”) can be done using

VAb

b.length0 1 2 3 4 5

k= Math.abs(hashCode(“VA”)) % b.length;
if (b[k] == null) b[k]= “VA”;

Suppose k is 5. This puts “VA” in b[5]
If b[k] != null?

Handle that later

5

Hashing
Hashing

add(“NY”)

VAb
b.length0 1 2 3 4 5

k= Math.abs(hashCode(“NY”)) % b.length;
if (b[k] == null) b[k]= “NY”;

Suppose k is 4. This puts “NY” in b[4]

NY

6

10/6/15

2

Collision Resolution

7

Collision resolution
Hashing

add(“VT”)

VAb
b.length0 1 2 3 4 5

k= Math.abs(hashCode(“VT”)) % b.length;
if (b[k] == null) b[k]= “VT”;

Suppose k is 4. Can’t place “VT” in b[4] because “NY” is already there

NY

Two ways to solve collisions: Open addressing and chaining.
Do open addressing first

8

Open addressing: linear probing
Hashing

add(“VT”). Suppose “VT” hashes to 4

VAb
b.length0 1 2 3 4 5

Search in successive locations (with wraparound) for
the first null element, and place “VT” there.

NY

Here, look in b[4], b[5], b[0], and place “VT” in b[0].

VT

9

Open addressing: linear probing
Hashing

add(“MA”). Suppose “MA” hashes to 4

VAb
b.length0 1 2 3 4 5

NY

Here, look in b[4], b[5], b[0], b[1] and place “MA” in b[1].

VT MA

This took 4 probes to find a null element.
“probe”: a test of one array element

10

Open addressing: linear probing
Hashing

VAb
b.length0 1 2 3 4 5

NY

basic code for add(String s):
int k= what s hashed to;
while (b[k] != null && !b[k].equals(s))

{ k= (k+1) % b.length(); }
if (b[k] = = null) { b[k]= s; } // if not null, s already in set

VT MA

11

Making linear probing take
expected constant time

Hashing

Load factor lf: (# non-null elements) / b.length

b
b.length0 1 2 3 4 5

VT VANYMA lf = 4 / 6

Under certain assumptions about the hash
function, the average number of probes used
to add an element is 1 / (1 – lf)

Somebody proved:

12

10/6/15

3

Making linear probing take
expected constant time

Hashing

Under certain assumptions about the hash function, the
average number of probes to add an element is 1 / (1 – lf)

Somebody proved:

So if lf ≤ ½ , meaning at least half the elements are null,
then the average number of probes is ≤ 1/(1/2) = 2.

WOW! Make sure at least half the elements are null and
expect no more than two probes!!! How can that be?

13

Making linear probing take
expected constant time

Hashing

Load factor lf: (# non-null elements) / b.length

b
b.length0 1 2 3 4 5

VAMA

If at least half the elements are null, expect no
more than two probes !!!

Here’s insight into it. Suppose half the elements are null. Then,
half the time, you can expect to need only 1 probe.

VT

Proof outside
scope of 2110

14

Rehash: If the load factor becomes ≥ ½

Hashing

If the load factor becomes ≥ ½, do the following:
1. Create a new empty array b1 of size 4*b.length
2. For each set element that is in b, hash it into array b1.
3. b= b1; // so from now on the new array is used

Suppose size of array goes from n to 4n. Then, can add more
than n values before this has to be done again.
We can show that this does not increase the expected run
time. We “amortize” this operation over the add operations
that created the set.

15

What does “amortize” mean?

Hashing

We bought a machine that makes fizzy water –adds fizz to
plain water. Now, we don’t have to buy fizzy water by the
bottle. The machine cost $100.

Use the machine to make one glass of fizzy water, that glass
cost us $100.00.
Make 100 glasses of fizzy water? Each glass cost us $1.00.
Make 1,000 glasses? Each glass cost us10 cents.
I are amortizing the cost of the machine over the use of the
machine, over the number of operations “make a glass …”.

16

Deleting an element from the set
Hashing

b
b.length0 1 2 3 4 5

VT VANYMA

Does set contain “MA”?
“MA” hashes to 4. After probes of b[4], b[5], b[0], b[1],
we say, yes, “MA’ is in the set.

17

Deleting an element from the set
Hashing

b
b.length0 1 2 3 4 5

VT VANYMA

Does set contain “MA”?
“MA” hashes to 4. After probes of b[4], b[5], b[0], b[1],
we say, yes, “MA’ is in the set.
Now suppose we delete “VA” from the set, by setting b[5] to
null.
Now ask whether the set contains “MA”. Two probes say no,
because the second probe finds null!!!

18

10/6/15

4

Deleting an element from the set
Hashing

b
b.length0 1 2 3 4 5

VT VANYMA

Therefore, we can’t delete a value from the set by setting
its array element to null. That messes up linear probing.

Instead, in Java, use an inner class for the array elements,
with two fields:

1. String value; // the value, like “VT”
2. boolean isInSet; // true iff value is in the set

19

Deleting an element from the set
Hashing

b
b.length0 1 2 3 4 5

VT VANYMA

Instead, in Java, use an inner class for the array elements,
with two fields:

1. String value; // the value, like “VT”
2. boolean isInSet; // true iff value is in the set

Above: red string means its isInSet field is true.
To delete “VA”, set its isInSet field to false

VA

20

Inner class HashEntry
class HashSet<E> {

LinkedList<HashEntry<E>>[] b;

private class HashEntry<E> {
private E value;
private boolean isInSet;

}
}

inner class to contain value and whether it is in the set
Class is private ---the user knows nothing about it

Collisions:
Chaining

21

Summary for open addressing –linear probing

1. Each non-null b[i] contains an object with two fields: a value and
boolean variable isInSet.

2. add(e). Hash e to an index and linear probe. If null was found, add
e at that spot. If e was found, set its isInSet field to true.
If load factor >= ½, move set elements to an array double the size.

3. Remove(e). Hash e to an index and linear probe. If null was found,
do nothing. If e was found, set its isInSet field to false.

4. Contains(e). Hash e to an index and linear probe. If e was found
and its isInSet field is true, return true; otherwise, return false.

DEMO. We have a complete implementation of this.
22

Hash Functions
Class Object contains a function hashCode().
The value of C.hashCode() is the memory address where
the object resides.

You can override this function in any class you write. Later
slides discuss why one would do this.

For primitive types, you have to write your own hashCode
function.

On the next slides, we discuss hash functions.
23

Requirements
Hash Functions

Hash functions MUST:
● have the same hash for equal objects

○ In Java: if a.equals(b), then
a.hashCode() == b.hashCode()

○ if you override equals and plan on using object in a HashMap
or HashSet, override hashCode too!

● be deterministic
○ calling hashCode on the same object should return the same

integer
■ important to have immutable values if you override equals!

24

10/6/15

5

Good hash functions
● As often as possible, if !a.equals(b), then a.hashCode() !=

b.hashCode()
○ this helps avoid collisions and clustering

● Good distribution of hash values across all possible keys
● FAST. add, contains, and remove take time proportional

to speed of hash function

A bad hash function won’t break a hash set but it could
seriously slow it down

Hash Functions

25

String.hashCode()
Don’t hash long strings, not O(1) but O(length of string)!

/** Return a hash code for this string.
* Computes it as
* s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
* using int arithmetic.
*/
public int hashCode() { ... }

Hash Functions

26

Designing good hash functions

class Thingy {
private String s1, s2;

public boolean equals(Object obj) {
return s1.equals(obj.s1) &&

s2.equals(obj.s2);
}

public int hashCode() {
return 37 * s1.hashCode() + 97 * s2.hashCode();

}
}

Hash Functions

27

Collisions: Chaining

an alternative to open addressing (probing)

28

Chaining definition

CA

NY VA

0 1 2 3 4 5

Collisions:
Chaining

Each b[k] contains
a linked list of
values in the set
that hashed to k.

b[5] is an
empty list

add(e): hash e to some k. If e is not on linked list b[k], add it to the list

remove(e): hash e to some k. If e is on linked list b[k], remove it

You can figure out other operations yourself.
29

Chaining

CA

NY VA

0 1 2 3 4 5

Collisions:
Chaining

Each b[k] contains
a linked list of
values in the set
that hashed to k.

Load factor is
3/6 = 1/2

The load factor: (number of values in list) / size of array
It must be kept under ½, as with open addressing

30

10/6/15

6

Linear probing
versus

quadratic probing

31

Linear vs quadratic probing

linear probing:
search the array in
order:
i, i+1, i+2, i+3 . . .

When a collision occurs, how do we search for an empty space?

quadratic probing:
search the array in
nonlinear sequence:
i, i+12, i+22, i+32 . . .

For quadratic probing, the
size of the array should
be a prime. Someone
proved that then, every
single array element will
be covered.

Collisions: Open Addressing

32

Why use quadratic probing

linear probing:
i, i+1, i+2, i+3 . . .

Collisions can lead to clustering: many full
elements in a row. Quadratic probing
spreads the values out more, leading to
less clustering than with linear probing.quadratic probing:

i, i+12, i+22, i+32 . . .

Collisions: Open Addressing

33

Big O!

34

Runtime analysis
Big O of Hashing

Open Addressing Chaining

Expected
O(hash function)

(since load factor kept < ½)
O(hash function)

(since load factor kept < ½)

Worst
O(n)

(no null between values)
O(n)

(all values in one linked list)

35

Amortized runtime
Big O of Hashing

Insert n items: n + 2n (from copying) = 3n inserts → O(3n) → O(n)
Amortized to constant time per insert

Copying Work

Everything has just been copied n inserts

Half were copied in previous doubling n/2 inserts

Half of those were copied in doubling
before previous one

n/4 inserts

... ...

Total work n + n/2 + n/4 + … ≤ 2n
36

10/6/15

7

Limitations of hash sets
1. Due to rehashing, adding elements may take O(n)

a. not always ideal for time-critical applications

1. No ordering among elements, very slow to find nearby elements

Alternatives (out of scope of the course):
1. hash set with incremental resizing prevents O(n) rehashing

1. self-balancing binary search trees are worst case O(log n) and
keep the elements ordered

Hash Functions

37

Hashing Extras
Hashing has wide applications in areas such as security
● cryptographic hash functions are ones that are very hard

to invert (figure out original data from hash code),
changing the data almost always changes the hash, and
two objects almost always have different hashes

● md5 hash: `md5 filename ̀in Terminal

Hash Functions

38

