
Recitation 6

Loop Invariants and Prelim Review

1

Four loopy questions
Loop Invariants

 //Precondition

Initialization;
 // invariant: P
 while (B) { S }

1. Does it start right?
Does initialization make
invariant P true?

2. Does it stop right?
Does P and !B imply
the desired result?

3. Does repetend S make
progress toward
termination?

4. Does repetend S
keep invariant P true?

2

Add elements backward
Loop Invariants

? b Precondition

 ? b s = sum of these

h

Invariant

s = sum of these b Postcondition

Get invariant by generalizing pre- and post-conditions

3

 ? s = sum of …

Add elements backward
Loop Invariants

INV: b

h

int s= 0;
int h= b.length-1;
while (h >= 0) {

 s= s + b[h];
}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

4

Add elements backward
Loop Invariants

 ? INV: b s = sum

h

int s= 0;
int h= b.length-1;
while (h > 0) {

 s= s + b[h];
 h--;

}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

5

Add elements backward
Loop Invariants

 ? INV: b s = sum

h

int s= 0;
int h= b.length-1;
while (h >= 0) {

 s= s + b[h];
 h= h - 2;

}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

6

Add elements backwards
Loop Invariants

 ? INV: b s = sum

h

int s= 0;
int h= b.length-1;
while (h >= 0) {

 s= s + b[h];
 h--;

}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

7

Add elements backward
Loop Invariants

 ? INV: b s = sum

h

int s= 0;
int h= 0;
while (h >= 0) {

 s= s + b[h];
 h--;

}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

8

Binary search in sorted b[0..n-1]
Given this
precondition
and a value v,
store a value in h to
truthify:

Prelim Review

 ? pre: b

0 n

 <= v ? > v inv : b

0 n h t

 <= v > v post: b

0 n h

Find invariant by
generalizing pre
and post

9

Binary search time (b[0..n-1] is sorted)
h= -1; t= n;
// invariant: P (below)
while (h < t-1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;
 else t= e;
}
// b[0..h] <= v < b[h+1..]

Prelim Review

 <= v ? > v inv P: b

0 n h t

b[h+1..t-1] starts out with n
elements in it.

Each iteration cuts size of
b[h+1..t-1] in half.

worst-case and expected
case time: log n

10

(some) things to know for the prelim
•  Can you list the steps in evaluating a new-expression? Can you do

them yourself on a piece of paper?
•  Can you list the steps in executing a method call? Can you do them

yourself on a piece of paper?
•  Do you understand exception handling? E.g. What happens after a

catch block has been executed?
•  Can you write a recursive method or understand a given one?
•  Abstract class and interfaces
•  ArrayList, interface Comparable
•  Loops invariants
 11

Exception handling
private static double m(int x) {

 int y = x;
 try {
 y = 5/x;
 return 5/(x+2);
 } catch (NullPointerException e) {
 System.out.println("null");
 } catch (RuntimeException e) {
 y = 5/(x+1);
 }
 return 1/x;

}

Prelim Review

12

What happens when:

 x = 0
 x = 1
 x = -1
 x = -2

 x = null(?)

What method calls are legal
Animal an; … an.m(args);

legal ONLY if Java can guarantee that
method m exists. How to guarantee?

Prelim Review

The … is computation.
stores something in an.

m must be declared in Animal or inherited. Why?

Someone might write a subclass C of Animal that does
not have m declared in it, create an object of C,
store it in an. Then method m would not exist

You know already from lecture 4 on class Object,
overriding toString(), and the bottom-up/overriding
rule that the overriding method is called

13

