Recitation 4

Abstract classes, Interfaces

A Little More Geometry!

Shape

) —

Abstract Classes

|

Square
area()
size

Triangle
area()
base
height

Circle
area()
radius 5

Demo 1: Complete this function

/** Return the sum of the areas of
* the shapes in s */
static double sumAreas (Shapel[] s) { }

1. Operator instanceof and casting are required
2. Adding new Shape subclasses breaks sumAreas

A Partial Solution:

Add method area to class Shape:

public double area() {
return 0O;

}

public double area () {
throw new RuntimeException (Yarea not
overridden”) ;

}

Problems not solved

1. What is a Shape that isn’t a Circle, Square, Triangle,
etc? What is only a shape, nothing more specific?
a.Shape s= new Shape (...); Should be

disallowed

2. What if a subclass doesn’t override area()?
a. Can'’t force the subclass to override it!
b. Incorrect value returned or exception thrown.

Solution: Abstract classes

Abstract class
Means that it can’t be instantiated.
new Shape () lllegal

public abstract class Shape {

public double area()

return 0;

Solution: Abstract methods

e (an alsohave

implemented

public abstract class Shape { methods

public abstract double area(); ° Place abstract

method only in
f abstract class.

Abstract method
Subclass must
override. of body.

® Semicoloninstead

Demo 2: A better solution

We modify class Shape to be abstract and make area () an
abstract method.

e Abstract class prevents instantiation of class Shape
e Abstract method forces all subclasses to override area ()

Abstract Classes, Abstract Methods

1. Cannot instantiate an object of an abstract class.
(Cannot use new-expression)

2. A subclass must override abstract methods.

Interfaces

Problem

Where is the best place to
implement whistle () ?

Animal

—

Whistler

Mammal

Bird

Human

Dog

Parrot

Interfaces

Interfaces

No multiple inheritance in Java!

class Whistler {
void breathe() { .. }

new Human () .breathe () ;

}
class Animal { Which breathe() should

void breathe () {) java run in class Human?

}
class Human extends Anima stler {
}

Why not make it fully abstract?

class abstract Whistler { Java doesn’t allow this

abstract wvoid breathe(); even though it would
} work. Instead, Java has
class abstract Animal { another construct for this
abstract void breathe(); purpose, the interface

}

class Human extends Anima

}

1stler {

Solution: Interfaces

e methods are automatically

public interface Whistler { publicand abstract
void whistle() ; fiald t ficall
: B | e fields are automatically
int MEANING OF LIFE= 42; public, static,and

} final (i.e. constants)

class Human extends Mammal implements Whistler {

} \
Must implement all methods in

the implemented interfaces

Multiple interfaces

Classes can implement
several interfaces!

public interface Singer { They must implement all the

void singTo (Human h); methods in those interfaces
they implement.

class Human extends Mammal implements Whistler, Singer {

}

Must implement singTo (Human h)
and whistle ()

Solution: Interfaces

Interface Wwhistler offers
promised functionality to
classes Human and Parrot!

Animal

—

Whistler

Mammal

Bird

Human

Dog

Parrot

Interfaces

Interfaces

Casting to an interface

Human h= new Human () ;

Object o= (Object) h; Object

Animal a= (Animal) h; I

Mammal m= (Mammal) h; Animal

Singer s= (Singer) h; I

Whistler w= (Whistler) h; Whistler Mammal Singer

All point to the same ‘\\\\ I ////
Human

memory address!

Casting to an interface

Human h= new Human{() ;

Object o= h; Obiject
Animal a= h; ‘
Mammal m= h; Automatic

Singer s= h; up-cast Animal

Whistler w= h; ‘
Whistler Mammal Singer

Forced
down-cast \ ‘ /
Human

Casting up to an interface automatically

class Human .. implements Whistler ({

void listenTo (Whistler w) {...} Obiject
| \
Human h = new Human(...);
Human hl= new Human(...):; Animal

h.listenTo (hl) ; ‘

Whistler Mammal

Arg h1 of the call has type Human. Its value is ‘
being stored in w, which is of type Whistler. \

Java does an upward cast automatically. It
costs no time; it is just a matter of perception.

Human

Demo 3: Implement Comparable<T>

Implement interface Comparable in class Shape:
public interface Comparable<T> {

/** = a negative integer if this object < ¢,
= 0 1f this object = ¢,
= a positive 1nteger 1f this object > c.
Throw a ClassCastException 1f ¢ can’t

be cast to the class of this object.
*/

int compareTo (T c);

Shape implements Comparable<T>

public class Shape implements Comparable<Shape> {

/** */
public int compareTo (Shape s) {
double diff= area() - s.areal();
return (diff == 0 2 0 : (diff < 0 2 -1 : +1));

Beauty of interfaces

Arrays.sort sorts an array of any class C, as long as C implements
interface Comparable<T> without needing to know any
implementation details of the class.

Classes that implement Comparable:

Boolean Byte Double Integer
String BigDecimal BigInteger Calendar
Time Timestamp and 100 others

String sorting

Arrays.sort (Object[] b) sortsan array of any class C, as long
as C implements interface Comparable<T>.

String implements Comparable, SO you can write
String[] strings= ...;

Arrays.sort (strings) ;
\ During the sorting, when comparing
elements, a String’s compareTo

function is used

And Shape sorting, too!

Arrays.sort (Object[] b) sortsan array of any class C, as long
as C implements interface Comparable<T>.

Shape implements Comparable, SO you can write
Shape|[] shapes= ...;
Arrays.sort (shapes) ;

\ During the sorting, when comparing

elements, a Shape’s compareTo
function is used

Abstract Classes vs. Interfaces

e Interfaceis what something
can do

e A contract to fulfill

e Software engineering
purpose

e Abstract class represents
something

e Sharing common code
between subclasses

Similarities:

e Can't instantiate

e Must implement abstract methods

e Later we'll use interfaces to define “abstract data types”
o (e.g.List, Set, Stack, Queue, etc)

