THREADS & CONCURRENCY

Announcements

Prelim 2 is next Thursday

Please complete P2Conflict by November 13!

Today: Start a new topic

Modern computers have “multiple cores”
Instead of a single CPU on the chip
5-10 common. Intel has prototypes with 80!

And even with a single core your program may
have more than one thing “to do” at a time

Argues for having a way to do many things at once

Finally, we often run many programs all at once

Why Multicore?

Moore’s Law: Computer speeds and memory densities
nearly double each year

Transistors
Per Die

@ 1965 Actual Data ¢ 26 4G

10°4 m MOS Arrays o MOS Logic 1975 Actual Data 256M 212M

108 1975 Projection e Itanium™

Memo Pentium® 4
Y Pentium® I

107 .
A Microprocessor Pentium®Il

106 : Pentium®

10°
104
103.
102
101

1960 1965 1970 1975 1980 1985 1990° 1995 2000 2005 2010

But a fast computer runs hot

Power dissipation rises as square of the clock rate

Chips were heading towards melting down!

Multicore: with four

CPUs (cores) on one chip,
even if we run each at half
speed we can perform more
overall computations!

Challenge

o nate — htop — 116x51

* The operating system provides

8 running

support for multiple “processes” B Lo o LA
Mem CEEEEEEERRRRRRREERRRREEETLLT e
. Sup [alE
* Inreality there are usually fewer [aes s v s e, i

processors than processes

* Processes are an abstraction:
at hardware level, lots of
multitasking

a

—memory subsystem

—video controller

—buses

— instruction prefetching

* Virtualization allows a single
machine to behave like many...

a) Y

a
Betup_gebearchidlinvert gelires g

What is a Thread?

A separate “execution’ that runs within a single

program and can perform a computational task

independently and concurrently with other threads

Many applications do their work in just a single
thread: the one that called main() at startup

But there may still be extra threads...

... Garbage collection runs in a “background” thread

GUIs have a separate thread that listens for events and
“dispatches” upcalls

Today: learn to create new threads of our own

What is a Thread?

’

A thread is anobject that “independently computes’
Needs to be created, like any object

Then “started” This causes some method (like main()) to
be invoked. It runs side by side with other thread in the
same program and they see the same global data
The actual execution could occur on distinct CPU
cores, but doesn’t need to

We can also simulate threads by multiplexing a smaller
number of cores over a larger number of threads

Concurrency

Concurrency refers to a single program in which
several threads are running simultaneously

Special problems arise

They see the same data and hence can interfere with

each other, e.g. if one thread is modifying a complex

structure like a heap while another is trying to read it
In this course we will focus on two main issues:

Race conditions
Deadlock

Thread class in Java

Threads are instances of the class Thread

Can create many, but they do consume space & time

The Java Virtual Machine creates the thread that
executes your main method.

Threads have a priority
Higher priority threads are executed preferentially

By default, newly created Threads have initial priority
equal to the thread that created it (but can change)

Creating a new Thread (Method 1)

long a, b;

public void run()

class PrimeThread extends Thread {

PrimeThread(long a, long b) {
this.a = a; this.b = b;

} overrides
Thread.run ()

//compute primes b

1
J

PrimeThread p = new Prs

p.start() ;

a and b

If you were to call run () directly
no new thread is used:
the calling thread will run it

... but if you create a new object and

then call start (),

@/a invokes run () in new thread

Creating a new Thread (Method 2)

class PrimeRun implements Runnable ({
long a, b;

PrimeRun (long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//compute primes between a and b

1
J

PrimeRun p = new PrimeRun (143, 195);
new Thread(p) .start();

Example

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest () .start () ;
for (int i = 0; i < 10; i++) {
System. out. format("%s %d\n",
Thread.currentThread(), 1i);

}

public void run() ({
for (int i = 0; 1 < 10; i++) {
System. out. format("%s %d\n",
Thread.currentThread(), 1i);

Thread[Thread-0,5,main]
Thread[main,5,main] O

Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9

Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]

0

OO Joy Ul dWDNRK

Example

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest () .start () ;
for (int i = 0; i < 10; i++) {
System. out. format("%s %d\n",
Thread.currentThread(), 1i);

}

public void run() ({
currentThread() .setPriority (4) ;
for (int i = 0; i < 10; i++) {
System. out. format("%s %d\n",
Thread.currentThread(), 1i);

Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main] 9

Thread[Thread-0,4,main]
Thread[Thread-0,4,main]
Thread[Thread-0,4,main]
Thread[Thread-0,4,main]
Thread[Thread-0,4,main]
Thread[Thread-0,4,main]
Thread[Thread-0,4,main]
Thread[Thread-0,4,main]
Thread[Thread-0,4,main]
Thread[Thread-0,4,main]

00O JdJoy Ul WM BERLR O

OO JoyUr dWDMNPKE O

Example

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest () .start () ;
for (int i = 0; i < 10; i++) {
System. out. format("%s %d\n",
Thread.currentThread(), 1i);

}

public void run() ({
currentThread() .setPriority (6) ;
for (int i = 0; i < 10; i++) {
System. out. format("%s %d\n",
Thread.currentThread(), 1i);

Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main] 5

Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[main,5,main] 6

Thread[main,5,main] 7

Thread[main,5,main] 8

Thread[main,5,main] 9

o W IRk O

W oo JoyUl dWDNPKEO

Example

public class ThreadTest extends Thread ({
static boolean ok = true;

public static void main(String[] args) {
new ThreadTest () .start () ;

for (int 1 = 0; 1 < 10; i++) {
System.out.println("waiting...");
yield() ;

waiting...
running. . .
waiting...
running. ..
waiting. ..
running. ..
waiting...
running. . .
waiting...
running. ..
waiting.

}

ok = false;

}

public void run() {
while (ok) {

If threads happen to be shar@
a CPU, yield allows other waiting

threads to run. But if there are
multiple cores, yield isn't needed

System.out.println("running..."); runniné
yield() ; waiting. ..
} running. ..

System.out.println("done") ;

done

Terminating Threads is tricky

11 Easily done... but only in certain ways

The safe way to terminate a thread is to have it return
from its run method

If a thread throws an uncaught exception, whole program
will be halted (but it can take a second or too...)
-1 There are some old APIs but they have issues: stop(),
interrupt(), suspend(), destroy(), etc.

Issue: they can easily leave the application in a
“broken” internal state.

Many applications have some kind of variable telling
the thread to stop itself.

Threads can pause -
%

A
R

L o

For that, a CPU must
schedule it. Higher priority threads could run first.

. . Gk »”
When active, a thread is runnable .

’

It may not actually be “running”.

A thread can also pause
It can call Thread.sleep(k) to sleep for k milliseconds

If it tries to do “1/O” (e.g. read a file, wait for mouse
input, even open a file) this can cause it to pause

Java has a form of locks associated with objects.
When threads lock an object, one succeeds at a time.

Background (daemon) Threads

g
SR

In many applications we have a notion of
“foreground’ and “background” (daemon) threads
Foreground threads are the ones doing visible work,

like interacting with the user or updating the display

Background threads do things like maintaining data
structures (rebalancing trees, garbage collection, etc)

On your computer, the same notion of background
workers explains why so many things are always
running in the task manager.

Race Conditions

14 o, ” . .
7 A race condition arises if two or more threads
access the same variables or objects concurrently
and at least one does updates

1 Example: Suppose t1 and t2 simulatenously execute
the statement x = x + 1; for some static global x.
Internally, this involves loading x, adding 1, storing x

If +1 and t2 do this concurrently, we execute the
statement twice, but x may only be incremented once

t1 and 12 “race” to do the update

Race Conditions

T
0 Suppose X is initially 5

Thread 11 Thread 12

1 LOAD X

1 LOAD X
7 ADD 1 7 ADD 1

1 STORE X
1 STORE X

0 ... after finishing, X=6! We “lost” an update

Race Conditions

Race conditions are bad news

Sometimes you can make code behave correctly
despite race conditions, but more often they cause bugs

And they can cause many kinds of bugs, not just the
example we see here!

T »” .
A common cause for blue screens, null pointer
exceptions, damaged data structures

Example — A Lucky Scenario

private Stack<String> stack = new Stack<String>();

public void doSomething () {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething (),
and there is one element on the stack

1. thread A tests stack.isEmpty () false
2. thread A pops = stack is now empty

3. thread B tests stack.isEmpty () = true
4. thread B just returns — nothing to do

Example — An Unlucky Scenario

private Stack<String> stack = new Stack<String>();

public void doSomething () {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething (),
and there is one element on the stack

1. thread A tests stack.isEmpty () = false
2. thread B tests stack.isEmpty () = false
3. thread A pops = stack is now empty

4. thread B pops = Exception!

Synchronization

’

Java has one “primary” tool for preventing these

problems, and you must use it by carefully and
explicitly — it isn't automatic.

’

Called a “synchronization barrier’
We think of it as a kind of lock

Even if several threads try to acquire the lock at once, only
one can succeed at a time, while others wait

When it releases the lock, the next thread can acquire it

You can’t predict the order in which contending threads will
get the lock but it should be “fair” if priorities are the same

Solution — with synchronization

private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {
if (stack.isEmpty()) return;
String s = stack.pop();

}
//do something with s...

Qynchroni zed blo@

* Put critical operations in a synchronized block
* The stack object acts as a lock
* Only one thread can own the lock at a time

Solution — Locking

* You can lock on any object, including this

public synchronized void doSomething () {

}

Behaves like

public void doSomething() {
synchronized (this) ({

}

}

Synchronization+priorities

Combining mundane features can get you in trouble

Java has priorities... and synchronization
But they don’t “mix’ nicely
High-priority runs before low priority

... The lower priority thread “starves’

Even worse...

With many threads, you could have a second high
priority thread stuck waiting on that starving low
priority thread! Now both are starving...

Fancier forms of locking

Java developers have created various
synchronization ADTs

Semaphores: a kind of synchronized counter

Event-driven synchronization

The Windows and Linux and Apple O/S all have
kernel locking features, like file locking

But for Java, synchronized is the core mechanism

Deadlock

The downside of locking — deadlock

A deadlock occurs when two or more competing
threads are waiting for one-another... forever

Example:
Thread t1 calls synchronized b inside synchronized a
But thread t2 calls synchronized a inside synchronized b

t1 waits for t2... and t2 waits for t1...

Finer grained synchronization

Java allows you to do fancier synchronization

But can only be used inside a synchronization block

Special primatives called wait/notify

wait /notify

Suppose we put this inside an object called animator:

boolean isRunning = true;

public_: synchronized void run() { thSt be Synchronized!
while (true) { ““---\\‘;

while (isRunning) {
//do one step of simulation

} Z\relinquishes lock on animator — |
BT awaits notification

wait () ;
} catch (InterruptedException ie) {}
isRunning = true; public void stopAnimation() ({
} animator.isRunning = false;

(S =

}

public void restartAnimation() {

Eotifies processes waiting | synchronized (animator) |

for animatorlock @~ —— animator.notify();
}

}

Summary

Use of multiple processes and multiple threads within
each process can exploit concurrency

Which may be real (multicore) or “virtual” (an illusion)

But when using threads, bewarel

Must lock (synchronize) any shared memory to avoid non-
determinism and race conditions

Yet synchronization also creates risk of deadlocks

Even with proper locking concurrent programs can have
TR ””
other problems such as " livelock

Serious treatment of concurrency is a complex topic
(covered in more detail in ¢s3410 and ¢s4410)

