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SPANNING TREES 
Lecture 21 
CS2110 – Fall 2015 
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Spanning trees 

¤ Calculating the shortest path in Dijkstra’s algorithm 
¤ Definitions 
¤ Minimum spanning trees 
¤ 3 greedy algorithms (including Kruskal & Prim) 
¤ Concluding comments: 

n Greedy algorithms 
n Travelling salesman problem 
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Dijkstra’s algorithm using Nodes. 

An object of class Node for each node of the graph. 
Nodes have an identification, (S, A, E, etc). 

Nodes contain shortest distance from Start node (red).  
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Backpointers 

Shortest path requires not only the distance from start to a 
node but the shortest path itself. How to do that? 

In the graph, red numbers are shortest distance from S. 
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Need shortest path from S to every node.
Storing that info in node S wouldn’t make sense.
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Backpointers 

Shortest path requires not only the distance from start to a 
node but the shortest path itself. How to do that? 

In the graph, red numbers are shortest distance from S. 
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In each node, store (a pointer to) previous node on 
the shortest path from S to that node. Backpointer
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Backpointers 
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When to set a backpointer? In the algorithm, processing an 
edge (f, w): If the shortest distance to w changes, then set w’s 
backpointer to f. It’s that easy! 
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Each iteration of Dijkstra’s algorithm 
    spl: shortest-path length calculated so far 

f= node in Frontier with min spl; Remove f from Frontier; 
for each neighbor w of f: 
    if w in far-off set 
    then    w.spl=  f.spl + weight(f, w); 
               Put w in the Frontier; 
     
    else if f.spl + weight(f, w) < w.spl 
           then   w.spl=  f.spl + weight(f, w) 
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w.backPointer=  f; 

w.backPointer=  f; 

 @Node… 
 Node  

spl _________ 
 
backPointer_____ 
 

Undirected trees 

• An undirected graph is a tree if there is 
exactly one simple path between any pair 
of vertices 
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Root of tree?  
It doesn’t 
matter. Choose 
any vertex for 
the root 

Facts about trees 

• |E| = |V| – 1 
• connected 
• no cycles 
Any two of these 
properties imply the 
third, and imply that 
the graph is a tree 

9 10 

A spanning tree of a connected undirected graph 
(V, E) is a subgraph (V, E') that is a tree 

10 •  Same set of vertices V 
•  E' ⊆ E 
•  (V, E') is a tree 

•  Same set of vertices V 
•  Maximal set of edges that 

contains no cycle 

•  Same set of vertices V 
•  Minimal set of edges that 

connect all vertices 

Three equivalent definitions

Spanning trees: examples 

http://mathworld.wolfram.com/SpanningTree.html 
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Finding a spanning tree 

A subtractive method 

•  If there is a cycle, pick 
an edge on the cycle, 
throw it out – the 
graph is still  
connected (why?) 

•  Repeat until no more 
cycles 

•  Start with the whole graph 
– it is connected 
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Maximal set 
of edges that 

contains no 
cycle 
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•  If there is a cycle, pick 
an edge on the cycle, 
throw it out – the 
graph is still  
connected (why?) 

•  Repeat until no more 
cycles 

•  Start with the whole graph – it is connected 

Finding a spanning tree 

A subtractive method 
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•  If there is a cycle, pick 
an edge on the cycle, 
throw it out – the 
graph is still  
connected (why?) 

•  Repeat until no more 
cycles 

•  Start with the whole graph – it is connected 

Finding a spanning tree 

A subtractive method 
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nondeterministic�
algorithm
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•  Start with no edges 

Finding a spanning tree: Additive method 

•  While the graph is not connected:  
    Choose an edge that connects 2  
    connected components and add it 
    – the graph still has no cycle (why?) 

Minimal set 
of edges 

that connect 
all vertices 

Tree edges will be red.
Dashed lines show original edges.
Left tree consists of 5 connected components, each a node

nondeterministic
algorithm

Minimum spanning trees 

• Suppose edges are weighted (> 0), and we 
want a spanning tree of minimum cost (sum of 
edge weights) 

• Some graphs have exactly one minimum 
spanning tree.  Others have several trees with 
the same cost, any of which is a minimum 
spanning tree 
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Minimum spanning trees 

•  Suppose edges are weighted (> 0), and we want a 
spanning tree of minimum cost (sum of edge weights) 
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3 •  Useful in network 
routing & other 
applications 

•  For example, to 
stream a video 
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3 Greedy algorithm 

A greedy algorithm:  follow the heuristic of making a 
locally optimal choice at each stage, with the hope of 
finding a global optimum 
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Example. Make change using the fewest number of coins. 
Make change for n cents, n < 100 (i.e. < $1) 
Greedy: At each step, choose the largest possible coin 
 
If n >= 50 choose a half dollar and reduce n by 50; 
If n >= 25 choose a quarter and reduce n by 25; 
As long as n >= 10, choose a dime and reduce n by 10; 
If n >= 5, choose a nickel and reduce n by 5; 
Choose n pennies. 
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3 Greedy algorithm 

A greedy algorithm:  follow the heuristic of making a locally 
optimal choice at each stage, with the hope of fining a global 
optimum. Doesn’t always work 
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Example. Make change using the fewest number of coins. 
Coins have these values: 7, 5, 1 
Greedy: At each step, choose the largest possible coin 
 
Consider making change for 10. 
The greedy choice would choose: 7, 1, 1, 1. 
But 5, 5 is only 2 coins. 

3 Greedy algorithm 

A greedy algorithm:  follow the heuristic of making a locally 
optimal choice at each stage, with the hope of fining a global 
optimum. Doesn’t always work 
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Example. Make change (if possible) using the fewest number of 
coins. 
Coins have these values: 7, 5, 2 
Greedy: At each step, choose the largest possible coin 
 
Consider making change for 10. 
The greedy choice would choose:  7,  2 –and can’t proceed! 
But 5, 5 works 

3 Greedy algorithms 

A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it 
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A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it 
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A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it 

14 

16 

24 
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3 Greedy algorithms 
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A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it 
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A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it 
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A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it 
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16 
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A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it 
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A. Find a max weight edge – if it is on a cycle, 
throw it out, otherwise keep it 

16 

29 

3 Greedy algorithms: Kruskal 
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B. Find a min weight edge – if it forms a cycle 
with edges already taken, throw it out, 
otherwise keep it 

Kruskal's 
algorithm 

14 

16 

30 
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3 Greedy algorithms: Kruskal 
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B. Find a min weight edge – if it forms a cycle 
with edges already taken, throw it out, 
otherwise keep it 

Kruskal's 
algorithm 
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B. Find a min weight edge – if it forms a cycle 
with edges already taken, throw it out, 
otherwise keep it 

Kruskal's 
algorithm 
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B. Find a min weight edge – if it forms a cycle 
with edges already taken, throw it out, 
otherwise keep it 

Kruskal's 
algorithm 
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B. Find a min weight edge – if it forms a cycle 
with edges already taken, throw it out, 
otherwise keep it 

Kruskal's 
algorithm 

16 

34 

3 Greedy Algorithms: Kruskal 
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B. Find a min weight edge – if it forms a cycle 
with edges already taken, throw it out, 
otherwise keep it 

Kruskal's 
algorithm 
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3 Greedy Algorithms: Kruskal 
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B. Find a min weight edge – if it forms a cycle 
with edges already taken, throw it out, 
otherwise keep it 

Kruskal's 
algorithm 

36 
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3 Greedy algorithms: Prim 
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C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle 

Prim's algorithm 
(reminiscent of 
Dijkstra's  algorithm) 
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Invariant: the added 
edges must form a tree 

3 Greedy algorithms: Prim 
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C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle 

Prim's algorithm 
(reminiscent of 
Dijkstra's  algorithm) 
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Invariant: the added 
edges must form a tree 

3 Greedy algorithms: Prim 
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C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle 

Prim's algorithm 
(reminiscent of 
Dijkstra's  algorithm) 

39 

Invariant: the added 
edges must form a tree 

3 Greedy algorithms: Prim 
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C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle 

Prim's algorithm 
(reminiscent of 
Dijkstra's  algorithm) 
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Invariant: the added 
edges must form a tree 

3 Greedy algorithms: Prim 
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C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle 

Prim's algorithm 
(reminiscent of 
Dijkstra's  algorithm) 
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Invariant: the added 
edges must form a tree 

3 Greedy algorithms: Prim 
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C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle 

Prim's algorithm 
(reminiscent of 
Dijkstra's  algorithm) 
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Invariant: the added 
edges must form a tree 
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3 Greedy algorithms: Prim 

C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle 

Prim's algorithm 
(reminiscent of 
Dijkstra's  algorithm) 
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Invariant: the added 
edges must form a tree 

3 Greedy algorithms: Prim 
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 When edge weights are all distinct, or if there is 
exactly one minimum spanning tree, the 3 
algorithms all find the identical tree 

16 
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Prim’s algorithm 

¨ O(m + n log n) for adj list 
¤ Use a PQ 
¤ Regular PQ produces time 

O(n + m log m) 
¤ Can improve to 

O(m + n log n) using a 
fancier heap 

prim(s) { 
   D[s]= 0; //start vertex 
   D[i]= ∞ for all i ≠ s; 
   while (a vertex is unmarked) { 
      v= unmarked vertex  
                  with smallest D; 
      mark v; 
      for (each w adj to v) 
         D[w]= min(D[w], c(v,w)); 
   } 
} 

• O(n2) for adj matrix 
– while-loop iterates n 
times 

– for-loop takes O(n) time 
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Application of MST 

Maze generation using Prim’s algorithm 
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http://en.wikipedia.org/wiki/File:MAZE_30x20_Prim.ogv 

The generation of a maze using Prim's algorithm on a randomly 
weighted grid graph that is 30x20 in size.  

More complicated maze generation 
47 

http://www.cgl.uwaterloo.ca/~csk/projects/mazes/ 

Greedy algorithms 

¨  These are Greedy Algorithms 
¨  Greedy Strategy: is an 
algorithm design technique 
  Like Divide & Conquer 

¨  Greedy algorithms are used to 
solve optimization problems 
  Goal: find the best solution    

¨ Works when the problem has 
the greedy-choice property: 
A global optimum can be 
reached by making locally 
optimum choices 

Example: Making change 
Given an amount of money, 
find smallest number of coins 
to make that amount 

Solution: Use Greedy Algorithm: 

    Use as many large coins as 
    you can. 

    Produces optimum number of 
    coins for US coin system 
    May fail for old UK system 

48 
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Similar code structures 

while (a vertex is unmarked) { 
 v= best unmarked vertex 
 mark v; 
 for (each w adj to v) 
  update D[w]; 

} 

• Breadth-first-search (bfs) 
– best: next in queue 
– update: D[w] = D[v]+1 
• Dijkstra’s algorithm 
– best: next in priority queue 
– update: D[w] = min(D[w], D[v]
+c(v,w)) 

• Prim’s algorithm 
– best: next in priority queue 
– update: D[w] = min(D[w], c(v,w)) 
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c(v,w) is the  
v→w edge weight 

Traveling salesman problem 

Given a list of cities and the distances between each pair, what is 
the shortest route that visits each city exactly once and returns to 
the origin city? 
 

¤  The true TSP is very hard (called NP complete)… for this 
we want the perfect answer in all cases.  

¤  Most TSP algorithms start with a spanning tree, then 
“evolve” it into a TSP solution.  Wikipedia has a lot of 
information about packages you can download… 
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