
11/4/15

1

SPANNING TREES
Lecture 21
CS2110 – Fall 2015

1

Spanning trees

¤ Calculating the shortest path in Dijkstra’s algorithm
¤ Definitions
¤ Minimum spanning trees
¤ 3 greedy algorithms (including Kruskal & Prim)
¤ Concluding comments:

n Greedy algorithms
n Travelling salesman problem

2

3

Dijkstra’s algorithm using Nodes.

An object of class Node for each node of the graph.
Nodes have an identification, (S, A, E, etc).

Nodes contain shortest distance from Start node (red).

S, 0
E, 4

C, 1 D, 3

A, 2

B, 1

2

1

1

4

2 1

4

Backpointers

Shortest path requires not only the distance from start to a
node but the shortest path itself. How to do that?

In the graph, red numbers are shortest distance from S.

S, 0
E, 4

C, 1 D, 3

A, 2

B, 1

2

1

1

4

2 1

Need shortest path from S to every node.
Storing that info in node S wouldn’t make sense.

5

Backpointers

Shortest path requires not only the distance from start to a
node but the shortest path itself. How to do that?

In the graph, red numbers are shortest distance from S.

S, 0
 null E, 4

C, 1 D, 3

A, 2

B, 1

2

1

1

4

2 1

In each node, store (a pointer to) previous node on
the shortest path from S to that node. Backpointer

6

Backpointers

S, 0
 null E, 4

C, 1 D, 3

A, 2

B, 1

2

1

1

4

2 1

When to set a backpointer? In the algorithm, processing an
edge (f, w): If the shortest distance to w changes, then set w’s
backpointer to f. It’s that easy!

11/4/15

2

Each iteration of Dijkstra’s algorithm
 spl: shortest-path length calculated so far

f= node in Frontier with min spl; Remove f from Frontier;
for each neighbor w of f:
 if w in far-off set
 then w.spl= f.spl + weight(f, w);
 Put w in the Frontier;

 else if f.spl + weight(f, w) < w.spl
 then w.spl= f.spl + weight(f, w)

7

w.backPointer= f;

w.backPointer= f;

 @Node…
 Node

spl _________

backPointer_____

Undirected trees

• An undirected graph is a tree if there is
exactly one simple path between any pair
of vertices

8

Root of tree?
It doesn’t
matter. Choose
any vertex for
the root

Facts about trees

• |E| = |V| – 1
• connected
• no cycles
Any two of these
properties imply the
third, and imply that
the graph is a tree

9 10

A spanning tree of a connected undirected graph
(V, E) is a subgraph (V, E') that is a tree

10 •  Same set of vertices V
•  E' ⊆ E
•  (V, E') is a tree

•  Same set of vertices V
•  Maximal set of edges that

contains no cycle

•  Same set of vertices V
•  Minimal set of edges that

connect all vertices

Three equivalent definitions

Spanning trees: examples

http://mathworld.wolfram.com/SpanningTree.html

11

Finding a spanning tree

A subtractive method

•  If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

•  Repeat until no more
cycles

•  Start with the whole graph
– it is connected

12

Maximal set
of edges that

contains no
cycle

11/4/15

3

•  If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

•  Repeat until no more
cycles

•  Start with the whole graph – it is connected

Finding a spanning tree

A subtractive method

13

•  If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

•  Repeat until no more
cycles

•  Start with the whole graph – it is connected

Finding a spanning tree

A subtractive method

14

nondeterministic�
algorithm

15
•  Start with no edges

Finding a spanning tree: Additive method

•  While the graph is not connected:
 Choose an edge that connects 2
 connected components and add it
 – the graph still has no cycle (why?)

Minimal set
of edges

that connect
all vertices

Tree edges will be red.
Dashed lines show original edges.
Left tree consists of 5 connected components, each a node

nondeterministic
algorithm

Minimum spanning trees

• Suppose edges are weighted (> 0), and we
want a spanning tree of minimum cost (sum of
edge weights)

• Some graphs have exactly one minimum
spanning tree. Others have several trees with
the same cost, any of which is a minimum
spanning tree

16

Minimum spanning trees

•  Suppose edges are weighted (> 0), and we want a
spanning tree of minimum cost (sum of edge weights)

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3 •  Useful in network
routing & other
applications

•  For example, to
stream a video

10

14

16

17

3 Greedy algorithm

A greedy algorithm: follow the heuristic of making a
locally optimal choice at each stage, with the hope of
finding a global optimum

18

Example. Make change using the fewest number of coins.
Make change for n cents, n < 100 (i.e. < $1)
Greedy: At each step, choose the largest possible coin

If n >= 50 choose a half dollar and reduce n by 50;
If n >= 25 choose a quarter and reduce n by 25;
As long as n >= 10, choose a dime and reduce n by 10;
If n >= 5, choose a nickel and reduce n by 5;
Choose n pennies.

11/4/15

4

3 Greedy algorithm

A greedy algorithm: follow the heuristic of making a locally
optimal choice at each stage, with the hope of fining a global
optimum. Doesn’t always work

19

Example. Make change using the fewest number of coins.
Coins have these values: 7, 5, 1
Greedy: At each step, choose the largest possible coin

Consider making change for 10.
The greedy choice would choose: 7, 1, 1, 1.
But 5, 5 is only 2 coins.

3 Greedy algorithm

A greedy algorithm: follow the heuristic of making a locally
optimal choice at each stage, with the hope of fining a global
optimum. Doesn’t always work

20

Example. Make change (if possible) using the fewest number of
coins.
Coins have these values: 7, 5, 2
Greedy: At each step, choose the largest possible coin

Consider making change for 10.
The greedy choice would choose: 7, 2 –and can’t proceed!
But 5, 5 works

3 Greedy algorithms

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

14

16

21

3 Greedy algorithms

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

14

16

22

3 Greedy algorithms

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

23

3 Greedy algorithms

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54

62
11
12

27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

24

11/4/15

5

3 Greedy algorithms

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54

62
11
12

27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

25

3 Greedy algorithms

33

4

13

9

6 32

40

7

21
15

1
2

5
66

22 28 24
34

72

64

8
25

54

62
11
12

27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

26

3 Greedy algorithms

4

13

9

6

7

21
15

1
2

5

22 24

8
25

54

11
12

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

27

3 Greedy algorithms

4

13

9

6

7

15

1
2

5
8

25

54

11
12

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

28

3 Greedy algorithms

14

4
9

6

7

1
2

5
8

25

54

11
12

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

16

29

3 Greedy algorithms: Kruskal

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

30

11/4/15

6

3 Greedy algorithms: Kruskal

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

31

3 Greedy algorithms: Kruskal

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

32

3 Greedy algorithms: Kruskal

33

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

33

3 Greedy algorithms: Kruskal

33

14

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

16

34

3 Greedy Algorithms: Kruskal

33

14

4

13

9

6 32

40

7

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

16

35

3 Greedy Algorithms: Kruskal

33

14

4

13

9

6 32

40

7

16

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

36

11/4/15

7

3 Greedy algorithms: Prim

33

14

4

13

9

6 32

40

7

16

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

37

Invariant: the added
edges must form a tree

3 Greedy algorithms: Prim

33

14

4

13

9

6 32

40

7

16

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

38

Invariant: the added
edges must form a tree

3 Greedy algorithms: Prim

33

14

4

13

9

6 32

40

7

16

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

39

Invariant: the added
edges must form a tree

3 Greedy algorithms: Prim

33

14

4

13

9

6 32

40

7

16

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

40

Invariant: the added
edges must form a tree

3 Greedy algorithms: Prim

33

14

4

13

9

6 32

40

7

16

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

41

Invariant: the added
edges must form a tree

3 Greedy algorithms: Prim

33

14

4

13

9

6 32

40

7

16

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

42

Invariant: the added
edges must form a tree

11/4/15

8

3 Greedy algorithms: Prim

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

33

14

4

13

9

6 32

40

7

16

21
15

100

1
2

5
66

22 28 24
34

72

64

8
25

54
101

62
11
12

27

49 51

3

10

43

Invariant: the added
edges must form a tree

3 Greedy algorithms: Prim

14

4
9

6

7

1
2

5
8

25

54

11
12

10

 When edge weights are all distinct, or if there is
exactly one minimum spanning tree, the 3
algorithms all find the identical tree

16

44

Prim’s algorithm

¨ O(m + n log n) for adj list
¤ Use a PQ
¤ Regular PQ produces time

O(n + m log m)
¤ Can improve to

O(m + n log n) using a
fancier heap

prim(s) {
 D[s]= 0; //start vertex
 D[i]= ∞ for all i ≠ s;
 while (a vertex is unmarked) {
 v= unmarked vertex
 with smallest D;
 mark v;
 for (each w adj to v)
 D[w]= min(D[w], c(v,w));
 }
}

• O(n2) for adj matrix
– while-loop iterates n
times

– for-loop takes O(n) time

45

Application of MST

Maze generation using Prim’s algorithm

46

http://en.wikipedia.org/wiki/File:MAZE_30x20_Prim.ogv

The generation of a maze using Prim's algorithm on a randomly
weighted grid graph that is 30x20 in size.

More complicated maze generation
47

http://www.cgl.uwaterloo.ca/~csk/projects/mazes/

Greedy algorithms

¨  These are Greedy Algorithms
¨  Greedy Strategy: is an
algorithm design technique
 Like Divide & Conquer

¨  Greedy algorithms are used to
solve optimization problems
 Goal: find the best solution

¨ Works when the problem has
the greedy-choice property:
A global optimum can be
reached by making locally
optimum choices

Example: Making change
Given an amount of money,
find smallest number of coins
to make that amount

Solution: Use Greedy Algorithm:

 Use as many large coins as
 you can.

 Produces optimum number of
 coins for US coin system
 May fail for old UK system

48

11/4/15

9

Similar code structures

while (a vertex is unmarked) {
 v= best unmarked vertex
 mark v;
 for (each w adj to v)
 update D[w];

}

• Breadth-first-search (bfs)
– best: next in queue
– update: D[w] = D[v]+1
• Dijkstra’s algorithm
– best: next in priority queue
– update: D[w] = min(D[w], D[v]
+c(v,w))

• Prim’s algorithm
– best: next in priority queue
– update: D[w] = min(D[w], c(v,w))

49

c(v,w) is the
v→w edge weight

Traveling salesman problem

Given a list of cities and the distances between each pair, what is
the shortest route that visits each city exactly once and returns to
the origin city?

¤  The true TSP is very hard (called NP complete)… for this
we want the perfect answer in all cases.

¤  Most TSP algorithms start with a spanning tree, then
“evolve” it into a TSP solution. Wikipedia has a lot of
information about packages you can download…

50

