

Spanning trees

\square Calculating the shortest path in Dijkstra's algorithm \square Definitions

- Minimum spanning trees
$\square 3$ greedy algorithms (including Kruskal \& Prim)
\square Concluding comments:
- Greedy algorithms
- Travelling salesman problem

Dijkstra's algorithm using Nodes.

An object of class Node for each node of the graph.
Nodes have an identification, (S, A, E, etc).
Nodes contain shortest distance from Start node (red).

Backpointers

Shortest path requires not only the distance from start to a node but the shortest path itself. How to do that?
In the graph, red numbers are shortest distance from S .

B, 1
Need shortest path from S to every node. Storing that info in node S wouldn't make sense.

Backpointers

Shortest path requires not only the distance from start to a
node but the shortest path itself. How to do that?
In the graph, red numbers are shortest distance from S.

Backpointers

When to set a backpointer? In the algorithm, processing an edge (f, w): If the shortest distance to w changes, then set w's backpointer to f. It's that easy!

Undirected trees

- An undirected graph is a tree if there is exactly one simple path between any pair of vertices

Root of tree?

 It doesn't matter. Choose any vertex for the root

Facts about trees

- $|\mathrm{E}|=|\mathrm{V}|-1$
- connected
- no cycles

Any two of these properties imply the third, and imply that the graph is a tree

A spanning tree of a connected undirected graph
(V, E) is a subgraph $\left(V, E^{\prime}\right)$ that is a tree

-
Same set of vertices V
- Maximal set of edges that
contains no cycle

- Same set of vertices V
- Minimal set of edges that
connect all vertices

Finding a spanning tree: Additive method

3 Greedy algorithm

A greedy algorithm: follow the heuristic of making a locally optimal choice at each stage, with the hope of finding a global optimum

Example. Make change using the fewest number of coins. Make change for n cents, $\mathrm{n}<100$ (i.e. $<\$ 1$)
Greedy: At each step, choose the largest possible coin
If $\mathrm{n}>=50$ choose a half dollar and reduce n by 50 ; If $\mathrm{n}>=25$ choose a quarter and reduce n by 25 ; As long as $\mathrm{n}>=10$, choose a dime and reduce n by 10 ; If $\mathrm{n}>=5$, choose a nickel and reduce n by 5 ; Choose n pennies.
3 Greedy algorithm

A greedy algorithm: follow the heuristic of making a locally optimal choice at each stage, with the hope of fining a global optimum. Doesn't always work

Example. Make change using the fewest number of coins.
Coins have these values: 7, 5, 1
Greedy: At each step, choose the largest possible coin
Consider making change for 10 .
The greedy choice would choose: $7,1,1,1$.
But 5, 5 is only 2 coins.

3 Greedy algorithm

A greedy algorithm: follow the heuristic of making a locally optimal choice at each stage, with the hope of fining a global optimum. Doesn't always work

Example. Make change (if possible) using the fewest number of coins.
Coins have these values: 7, 5, 2
Greedy: At each step, choose the largest possible coin
Consider making change for 10 .
The greedy choice would choose: 7, 2 -and can't proceed! But 5, 5 works

3 Greedy algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy algorithms

A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy algorithms
A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy algorithms
A. Find a max weight edge - if it is on a cycle, throw it out, otherwise keep it

3 Greedy algorithms: Kruskal
B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy algorithms: Kruskal
B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy Algorithms: Kruskal

B. Find a min weight edge - if it forms a cycle with edges already taken, throw it out, otherwise keep it

Kruskal's algorithm

3 Greedy algorithms: Prim
C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

3 Greedy algorithms: Prim

C. Start with any vertex, add min weight edge extending that connected component that does not form a cycle

Prim's algorithm (reminiscent of Dijkstra's algorithm)

Invariant: the added edges must form a tree

3 Greedy algorithms: Prim

When edge weights are all distinct, or if there is exactly one minimum spanning tree, the 3 algorithms all find the identical tree

Prim's algorithm

Greedy algorithms
\square These are Greedy Algorithms

- Greedy Strategy: is an algorithm design technique Like Divide \& Conquer
\square Greedy algorithms are used to solve optimization problems Goal: find the best solution
\square Works when the problem has the greedy-choice property: A global optimum can be reached by making locally optimum choices

Example: Making change Given an amount of money, find smallest number of coins to make that amount
Solution: Use Greedy Algorithm: Use as many large coins as you can.
Produces optimum number of coins for US coin system May fail for old UK system

Similar code structures	
49	
```while (a vertex is unmarked) { v= best unmarked vertex mark v; for (each w adj to v) update D[w];```   $c(v, w)$ is the $\mathrm{v} \rightarrow \mathrm{w}$ edge weight	- Breadth-first-search (bfs)   -best: next in queue   -update: $\mathrm{D}[\mathrm{w}]=\mathrm{D}[\mathrm{v}]+1$   - Dijkstra's algorithm   -best: next in priority queue   -update: $D[w]=\min (D[w], D[v]$ $+c(v, w))$   - Prim's algorithm   -best: next in priority queue   -update: $D[w]=\min (D[w], c(v, w))$

## Traveling salesman problem

Given a list of cities and the distances between each pair, what is the shortest route that visits each city exactly once and returns to the origin city?

- The true TSP is very hard (called NP complete)... for this we want the perfect answer in all cases.
$\square$ Most TSP algorithms start with a spanning tree, then "evolve" it into a TSP solution. Wikipedia has a lot of information about packages you can download...

