
1	

Graphs	-	II	 CS	2110,	Fall	2015	 Where	did	I	leave	that	book?	

h=p://www.geahvet.com	

Where	did	I	leave	that	book?	

h=p://www.geahvet.com	

Where	did	I	leave	that	book?	

h=p://www.geahvet.com	

Go	as	far	down	a	path	as	
possible	before	backtracking	–	
Depth-First	Search	

Graph	Algorithms	

•  Search	
– Depth-first	search	
– Breadth-first	search	

•  Shortest	paths	
– Dijkstra's	algorithm	

•  Minimum	spanning	trees	
– Prim's	algorithm	
– Kruskal's	algorithm	

RepresentaSons	of	Graphs	

2 3

2 4

3

1

2

3

4

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 0

 1 2 3 4

1

2

3

4

Adjacency	List	 Adjacency	Matrix	

1 2

3 4

2	

Adjacency	Matrix	or	Adjacency	List?	
•  DefiniSons:	

–  n	=	number	of	verSces	
–  m	=	number	of	edges	
–  d(u)	=	degree	of	u	=	number	of	edges	leaving	u

•  Adjacency	Matrix	
–  Uses	space	O(n2)
–  Can	iterate	over	all	edges	in	Sme	O(n2)	
–  Can	answer	“Is	there	an	edge	from	u	to	v?”	in	O(1)	Sme	
–  Be=er	for	dense	graphs	(lots	of	edges)	

•  Adjacency	List	
–  Uses	space	O(m + n)	
–  Can	iterate	over	all	edges	in	Sme	O(m + n)	
–  Can	answer	“Is	there	an	edge	from	u	to	v?”	in	O(d(u))	Sme	
–  Be=er	for	sparse	graphs	(fewer	edges)	

Depth-First	Search	

•  Given	a	graph	and	one	of	its	nodes	u	
(say	node	1	below)	

1	

0

2	

5

3	

4	

6	

Depth-First	Search	

•  Given	a	graph	and	one	of	its	nodes	u	
(say	node	1	below)	

•  We	want	to	“visit”	each	node	reachable	from	u	
(nodes	1,	0,	2,	3,	5)	

1	

0

2	

5

3	

4	

6	

There	are	many	paths	
to	some	nodes.	
	
How	do	we	visit	all	
nodes	efficiently,	
without	doing	extra	
work?	

Depth-First	Search	

boolean[]	visited;	
•  Node	u	is	visited	means:	visited[u]	is	true	
•  To	visit	u	means	to:	set	visited[u]	to	true	
•  Node	v	is	REACHABLE	from	node	u	if	there	
is	a	path	(u,	…,	v)	in	which	all	nodes	of	the	path	
are	unvisited.	

1	

0

2	

5

3	

4	

6	

Suppose	all	nodes	
are	unvisited.	
	
	
	
	
	
	
	

Depth-First	Search	

1	

0

2	

5

3	

4	

6	

Suppose	all	nodes	
are	unvisited.	
	
Nodes	REACHABLE	
from	node	1:	
{1,	0,	2,	3,	5}	
	
	
	

boolean[]	visited;	
•  Node	u	is	visited	means:	visited[u]	is	true	
•  To	visit	u	means	to:	set	visited[u]	to	true	
•  Node	v	is	REACHABLE	from	node	u	if	there	
is	a	path	(u,	…,	v)	in	which	all	nodes	of	the	path	
are	unvisited.	

Depth-First	Search	

1	

0

2	

5

3	

4	

6	

Suppose	all	nodes	
are	unvisited.	
	
Nodes	REACHABLE	
from	node	1:	
{1,	0,	2,	3,	5}	
	
Nodes	REACHABLE	
from	4:	{4,	5,	6}	

boolean[]	visited;	
•  Node	u	is	visited	means:	visited[u]	is	true	
•  To	visit	u	means	to:	set	visited[u]	to	true	
•  Node	v	is	REACHABLE	from	node	u	if	there	
is	a	path	(u,	…,	v)	in	which	all	nodes	of	the	path	
are	unvisited.	

3	

Depth-First	Search	

1	

0

2	

5

3	

4	

6	

Green:	visited	
Blue:	unvisited	
	
	
	
	
	
	
	

boolean[]	visited;	
•  Node	u	is	visited	means:	visited[u]	is	true	
•  To	visit	u	means	to:	set	visited[u]	to	true	
•  Node	v	is	REACHABLE	from	node	u	if	there	
is	a	path	(u,	…,	v)	in	which	all	nodes	of	the	path	
are	unvisited.	

Depth-First	Search	

1	

0

2	

5

3	

4	

6	

Green:	visited	
Blue:	unvisited	
	
Nodes	REACHABLE	
from	node	1:	
{1,	0,	5}	
	
	
	

boolean[]	visited;	
•  Node	u	is	visited	means:	visited[u]	is	true	
•  To	visit	u	means	to:	set	visited[u]	to	true	
•  Node	v	is	REACHABLE	from	node	u	if	there	
is	a	path	(u,	…,	v)	in	which	all	nodes	of	the	path	
are	unvisited.	

Depth-First	Search	

1	

0

2	

5

3	

4	

6	

Green:	visited	
Blue:	unvisited	
	
Nodes	REACHABLE	
from	node	1:	
{1,	0,	5}	
	
Nodes	REACHABLE	
from	4:	none	

Not	even	4	itself,	because	
it’s	already	been	visited!	

boolean[]	visited;	
•  Node	u	is	visited	means:	visited[u]	is	true	
•  To	visit	u	means	to:	set	visited[u]	to	true	
•  Node	v	is	REACHABLE	from	node	u	if	there	
is	a	path	(u,	…,	v)	in	which	all	nodes	of	the	path	
are	unvisited.	

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	
	
	
	
}	

1

0

2

5

3

4

6

1

0

2

5

3

4

6

Start	 End	

Let	u	be	1	
	
The	nodes	
REACHABLE	from	1	
are	1,	0,	2,	3,	5	

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	
	
	
	
}	

1

0

2

5

3

4

6

Let	u	be	1	
	
The	nodes	
REACHABLE	from	1	
are	1,	0,	2,	3,	5	

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	
	
}	

1

0

2

5

3

4

6

Let	u	be	1	
	
The	nodes	
REACHABLE	from	1	
are	1,	0,	2,	3,	5	

4	

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	
	
}	

1

0

2

5

3

4

6

Let	u	be	1	(visited)	
	
The	nodes	to	be	
visited	are	0,	2,	3,	5	
	
	
	
	

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	for	all	edges	(u,	v)	leaving	u:	
	 	if	v	is	unvisited	then	dfs(v);	

}	

Let	u	be	1	(visited)	
	
The	nodes	to	be	
visited	are	0,	2,	3,	5	
	
Have	to	do	DFS	on	
all	unvisited	
neighbors	of	u!	

1

0

2

5

3

4

6

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	for	all	edges	(u,	v)	leaving	u:	
	 	if	v	is	unvisited	then	dfs(v);	

}	

Suppose	the	for	
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1)	visits	
the	nodes	in	this	
order:	1	…	

1

0

2

5

3

4

6

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	for	all	edges	(u,	v)	leaving	u:	
	 	if	v	is	unvisited	then	dfs(v);	

}	

Suppose	the	for	
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1)	visits	
the	nodes	in	this	
order:	1,	0	…	

1

0

2

5

3

4

6

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	for	all	edges	(u,	v)	leaving	u:	
	 	if	v	is	unvisited	then	dfs(v);	

}	

Suppose	the	for	
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1)	visits	
the	nodes	in	this	
order:	1,	0,	2	…	

1

0

2

5

3

4

6

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	for	all	edges	(u,	v)	leaving	u:	
	 	if	v	is	unvisited	then	dfs(v);	

}	

Suppose	the	for	
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1)	visits	
the	nodes	in	this	
order:	1,	0,	2,	3	…	

1

0

2

5

3

4

6

5	

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	for	all	edges	(u,	v)	leaving	u:	
	 	if	v	is	unvisited	then	dfs(v);	

}	

Suppose	the	for	
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1)	visits	
the	nodes	in	this	
order:	1,	0,	2,	3,	5	

1

0

2

5

3

4

6

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	for	all	edges	(u,	v)	leaving	u:	
	 	if	v	is	unvisited	then	dfs(v);	

}	

Suppose	n	nodes	are	REACHABLE	along	e	
edges	(in	total).	What	is	
•  Worst-case	execuSon?	
•  Worst-case	space?	

Depth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	
that	are	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	visited[u]	=	true;	
	for	all	edges	(u,	v)	leaving	u:	
	 	if	v	is	unvisited	then	dfs(v);	

}	

Example:	Use	different	way	(other	than	array	
visited)	to	know	whether	a	node	has	been	visited	

Example:	We	really	haven’t	said	what	data	
structures	are	used	to	implement	the	graph	

That’s	all	there	is	to	
basic	DFS.	You	may	
have	to	change	it	to	
fit	a	parScular	
situaSon.	

If	you	don’t	have	
this	spec	and	you	
do	something	
different,	it’s	
probably	wrong.	

Depth-First	Search	in	OO	fashion	
public	class	Node	{	

	boolean	visited;	
	List<Node>	neighbors;	

	
	/**	This	node	is	unvisited.	Visit	all	nodes	
								REACHABLE	from	this	node	*/	
	public	void	dfs()	{	
	 	visited=	true;		
	 	for	(Node	n:	neighbors)	{	
	 							if	(!n.visited)	n.dfs();	
	 	}	
	}	

}		

Each	node	of	the	
graph	is	an	object	
of	type	Node	

No	need	for	a	
parameter.	The	
object	is	the	node.	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);				//	Not	Java!	
	//	inv:	all	nodes	that	have	to	be	visited	are	
	//									REACHABLE	from	some	node	in	s	
	while	()	{	
	 	u=	s.pop();				//	Remove	top	stack	node,	put	in	u	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	

s	is	not	empty	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	

Stack	s	

	
	
	
	
	
	
	
1	

6	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	0	

Stack	s	

	
	
	
	
	
	
	
1	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	0	

Stack	s	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	0	

Stack	s	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	0	

Stack	s	

	
	
	
	
	
0	
2	
5	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	1	

Stack	s	

	
	
	
	
	
0	
2	
5	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	1	

Stack	s	

	
	
	
	
	
	
2	
5	

7	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	1	

Stack	s	

	
	
	
	
	
	
2	
5	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	2	

Stack	s	

	
	
	
	
	
	
2	
5	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	2	

Stack	s	

	
	
	
	
	
	
	
5	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	2	

Stack	s	

	
	
	
	
	
	
	
5	

Depth-First	Search	wri=en	iteraSvely	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	dfs(int	u)	{	

	Stack	s=	(u);	
	 	while	(s	is	not	empty)	{	

	 	u=	s.pop();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	s.push(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	dfs(1)	 IteraSon	2	

Stack	s	

	
	
	
	
	
3	
5	
5	

Yes,	5	is	put	on	the	
stack	twice,	once	for	
each	edge	to	it.	It	will	
be	visited	only	once.	

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);				//	Not	Java!	
	//	inv:	all	nodes	that	have	to	be	visited	are	
	//									REACHABLE	from	some	node	in	s	
	while	()	{	
	 	u=	q.popFirst();				//	Remove	first	node	in	queue,	put	in	u	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);				//	Add	to	end	of	queue	
	 	}	
	}	

}	

q	is	not	empty	

8	

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
1	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
1	

IteraSon	0	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	

IteraSon	0	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	

IteraSon	0	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
0	2	

IteraSon	0	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
0	2	

IteraSon	1	

7

9	

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
2	

IteraSon	1	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
2	

IteraSon	1	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
2	7	

IteraSon	1	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
2	7	

IteraSon	2	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
7	

IteraSon	2	

7

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
7	

IteraSon	2	

7

10	

Breadth-First	Search	
/**	Node	u	is	unvisited.	Visit	all	nodes	REACHABLE	from	u.	*/	
public	sta<c	void	bfs(int	u)	{	

	Queue	q=	(u);	
	 	while	q	is	not	empty)	{	

	 	u=	q.popFirst();	
	 	if	(u	has	not	been	visited)	{	
	 	 	visit	u;	
	 	 	for	each	edge	(u,	v)	leaving	u:	
	 	 	 	q.append(v);	
	 	}	
	}	

}	 1

0

2

5

3

4

6

Call	bfs(1)	

Queue	q	
7	3	5	

IteraSon	2	

Breadth	first:	
(1)  Node	u	
(2)  All	nodes	1	edge	from	u	
(3)  All	nodes	2	edges	from	u	
(4)  All	nodes	3	edges	from	u	
…	

7

