
10/21/15

1

PRIORITY QUEUES AND
HEAPS
Lecture 17
CS2110 Fall 2015

Readings and Homework

Read Chapter 26 “A Heap Implementation” to learn about heaps

Exercise: Salespeople often make matrices that show all the great
features of their product that the competitor’s product lacks. Try this
for a heap versus a BST. First, try and

sell someone on a BST: List some
desirable properties of a BST
that a heap lacks. Now be the heap
salesperson: List some good things
about heaps that a BST lacks. Can
you think of situations where you
would favor one over the other?

2

With ZipUltra heaps, you’ve got it
made in the shade my friend!

Stacks and queues are restricted lists

•  Stack (LIFO) implemented as list
– add(), remove() from front of list

•  Queue (FIFO) implemented as list

– add() on back of list, remove() from front of list

•  These operations are O(1)

55 12 19 16 head

tail

3

Both efficiently implementable using a
singly linked list with head and tail

Interface Bag (not In Java Collections)

interface	Bag<E>	
							implements	Iterable	{	
			void	add(E	obj);	
			boolean	contains(E	obj);	
			boolean	remove(E	obj);	
			int	size();		
			boolean	isEmpty();	
			Iterator<E>	iterator()	
}	

Refinements of Bag: Stack, Queue, PriorityQueue

4

Also called multiset

Like a set except
that a value can be
in it more than
once. Example: a
bag of coins

Priority queue

•  Bag in which data items are Comparable

•  Smaller elements (determined by compareTo()) have higher
priority

• remove() return the element with the highest priority = least
in the compareTo() ordering

•  break ties arbitrarily

5

Scheduling jobs to run on a computer
default priority = arrival time
priority can be changed by operator

Scheduling events to be processed by an event handler
priority = time of occurrence

Airline check-in
first class, business class, coach
FIFO within each class

Tasks that you have to carry out. You determine priority

Examples of Priority Queues
6

10/21/15

2

Example: Airline check-in
7

• Fixed number of priority levels 0,...,p – 1
• FIFO within each level
• Example: airline check-in

• add()– insert in appropriate queue – O(1)
• poll()– must find a nonempty queue – O(p)

first class many miles paying frequent flier

java.util.PriorityQueue<E>
8

interface	PriorityQueue<E>	{	
	boolean	add(E	e)	{...}	//insert	an	element	
	void	clear()	{...}	//remove	all	elements	
	E	peek()	{...}	//return	min	element	w/o	removing	
	E	poll()	{...}	//remove	and	return	min	element	
	boolean	contains(E	e)	
	boolean	remove(E	e)	
	int	size()	{...}	
	Iterator<E>	iterator()	
}	

Priority queues as lists
9

•  Maintain as unordered list
– add() put new element at front – O(1)
– poll() must search the list – O(n)
– peek() must search the list – O(n)

•  Maintain as ordered list
– add() must search the list – O(n)
– poll() must search the list – O(n)
– peek() O(1)

Can we do better?

Heap
10

•  A heap is a concrete data structure that can be used
to implement priority queues

•  Gives better complexity than either ordered or
unordered list implementation:
– add(): O(log n)
– poll(): O(log n)

•  O(n log n) to process n elements
•  Do not confuse with heap memory, where the Java

virtual machine allocates space for objects – different
usage of the word heap

Heap
11

•  Binary tree with data at each node
•  Satisfies the Heap Order Invariant:

•  Binary tree is complete (no holes)

1. The least (highest priority) element of any
subtree is at the root of that subtree.

2. Every level (except last) completely filled.
Nodes on bottom level are as far left as possible.

4

14 6

21 19 8 35

22 55 38 10 20

Smallest element in any subtree
is always found at the root
of that subtree

Note: 19, 20 < 35: Smaller elements
can be deeper in the tree!

Heap
12

10/21/15

3

4

14 6

21 19 8

22 55 10 20

Should be complete:
* Every level (except
last) completely filled.
* Nodes on bottom
level are as far

left as possible.

missing nodes

Not a heap —has two holes
13

4

14 6

21 19 8 35

22 55 38

0

Heap: number nodes as shown
14

1 2

3

9

6 5

7 8

4

children of node k:
at 2k + 1 and 2k + 2

parent of node k:
at (k-1) / 2

Remember, tree has no holes

•  Heap nodes in b in order, going across each level from
left to right, top to bottom

•  Children b[k] are b[2k + 1] and b[2k + 2]

•  Parent of b[k] b[(k – 1)/2]

We illustrate using an array b
(could also be ArrayList or Vector)

15

0 1 2 3 4 5 6 7 8 9

Tree structure is implicit.
No need for explicit links!

to parent

to children

•  Add e at the end of the array

•  If this violates heap order because it is smaller than its
parent, swap it with its parent

•  Continue swapping it up until it finds its rightful place

•  The heap invariant is maintained!

add(e)
16

4

14 6

21 19 8 35

22 55 38 10 20

17

add()

4

14 6

21 19 8 35

22 55 38 10 20 5

18

add()

10/21/15

4

4

14 6

21

19

8 35

22 55 38 10 20

5

19

add()

4

14

6

21

19

8 35

22 55 38 10 20

5

20

add()

4

14

6

21

19

8 35

22 55 38 10 20

5

21

add()

4

14

6

21

19

8 35

22 55 38 10 20

5

2

22

add()

4

14

6

21

19

8

35 22 55 38 10 20

5

2

23

add()

4

14

6

21

19

8

35 22 55 38 10 20

2

5

24

add()

10/21/15

5

2

14

6

21

19

8

35 22 55 38 10 20

4

5

25

add()

2

14

6

21

19

8

35 22 55 38 10 20

4

5

26

add()

• Time is O(log n), since the tree is balanced

– size of tree is exponential as a function of depth

– depth of tree is logarithmic as a function of size

27

add() to a tree of size n

/**	An	instance	of	a	heap	*/	
class	Heap<E>	{	
		E[]	b=	new	E[50];		//heap	is	b[0..n-1]	
		int	n=	0;										//	heap	invariant	is	true	
	
		/**	Add	e	to	the	heap	*/	
		public	void	add(E	e)	{	
				b[n]=	e;	
				n=	n	+	1;		
				bubbleUp(n	-	1);	//	given	on	next	slide	
		}	
}	

28

add() --assuming there is space

class	Heap<E>	{	
		/**	Bubble	element	#k	up	to	its	position.	
				*	Pre:	heap	inv	holds	except	maybe	for	k	*/	
		private	void	bubbleUp(int	k)	{	
				int	p=	(k-1)/2;			//	p	is	the	parent	of	k	
				//	inv:	p	is	parent	of	k	and	
				//	every	other	elt	satisfies	the	heap	inv						
				while	(k>0		&&		b[k].compareTo(b[p])	<	0)	{	
						swap(b[k],	b[p]);	
						k=	p;	
						p=	(k-1)/2;	
				}	
}	

29

add(). Remember, heap is in b[0..n-1]

•  Remove the least element and return it – (at the root)
•  This leaves a hole at the root – fill it in with the last

element of the array
•  If this violates heap order because the root element is

too big, swap it down with the smaller of its children
•  Continue swapping it down until it finds its rightful

place
•  The heap invariant is maintained!

30

poll()

10/21/15

6

4

5 6

21 14 8 35

22 55 38 10 20 19

31

poll()

5 6

21 14 8 35

22 55 38 10 20 19

4

32

poll()

5 6

21 14 8 35

22 55 38 10 20 19

4

33

poll()

5 6

21 14 8 35

22 55 38 10 20

19 4

34

poll()

5

6

21 14 8 35

22 55 38 10 20

19

4

35

poll()

5

6

21

14

8 35

22 55 38 10 20

19

4

36

poll()

10/21/15

7

5

6

21

14

8 35

22 55 38 10 20

4

19

37

poll()

6

21

14

8 35

22 55 38 10 20

4 5

19

38

poll()

6

21

14

8 35

22 55 38 10 20

19

4 5

39

poll()

6

21

14

8 35

22 55 38 10

20

19

4 5

40

poll()

6

21

14

8 35

22 55 38 10

20

19

4 5

41

poll()

6

21

14 8

35

22 55 38 10

20 19

4 5

42

poll()

10/21/15

8

6

21

14 8

35

22 55 38

10

20

19

4 5

43

poll()

6

21

14 8

35

22 55 38

10 19

20

4 5

44

poll()

Time is O(log n), since the tree is balanced

45

poll()

	/**	Remove	and	return	the	smallest	element		
			*	(return	null	if	list	is	empty)	*/	
	public	E	poll()	{	
					if	(n	==	0)	return	null;	
					E	v=		b[0];					//	smallest	value	at	root	
					b[0]=	b[n-1];			//	move	last	elt	to	root	
					n=	n	-	1;		
					bubbleDown(0);	
					return	v;	
	}	

46

poll(). Remember, heap is in b[0..n-1]

/**	Bubble	root	down	to	its	heap	position.	
				Pre:	b[0..n-1]	is	a	heap	except	maybe	b[0]	*/	
private	void	bubbleDown()	{	
		int	k=	0;	
		//	Set	c	to	smaller	of	k’s	children	
		int	c=	2*k	+	2;					//	k’s	right	child	
		if	(c	>=	n	||	b[c-1].compareTo(b[c])	<	0)	
				c=	c-1;	
		//	inv:	b[0..n-1]	is	a	heap	except	maybe	b[k]	
		//	Also,	b[c]	is	b[k]’s	smallest	child	
		while	(c	<	n	&&		b[k].compareTo(b[c])	>	0)	{	
				swap(b[k],	b[c]);	
				k=	c;	
				c=	2*k	+	2;	//	k’s	right	child	
				if	(c	>=	n	||	b[c-1].compareTo(b[c])	<	0)	
						c=	c-1;	
			}					
}	

47

Trouble changing heap behaviour a bit

Separate priority from value and do this:
 add(e, p); //add element e with priority p (a double)

 THIS IS EASY!

48

Be able to change priority
 change(e, p); //change priority of e to p

 THIS IS HARD!

Big question: How do we find e in the heap?
Searching heap takes time proportional to its size! No good!
Once found, change priority and bubble up or down. OKAY

10/21/15

9

HeapSort(b, n) —Sort b[0..n-1]
49

1.  Make b[0..n-1] into a max-heap (in place)

2.  for (k= n-1; k > 0; k= k-1) {
 b[k]= poll –i.e. take max element out of heap.
 }

A max-heap has max value at root

Whet your appetite –use heap to get exactly n log n
in-place sorting algorithm. 2 steps, each is O(n log n)

We’ll post this algorithm on course website

Many uses of priority queues & heaps

¨  Mesh compression: quadric error mesh simplification

¨  Event-driven simulation: customers in a line

¨  Collision detection: "next time of contact" for colliding bodies

¨  Data compression: Huffman coding

¨  Graph searching: Dijkstra's algorithm, Prim's algorithm

¨  AI Path Planning: A* search

¨  Statistics: maintain largest M values in a sequence

¨  Operating systems: load balancing, interrupt handling

¨  Discrete optimization: bin packing, scheduling

¨  Spam filtering: Bayesian spam filter

50

Surface simplification [Garland and Heckbert 1997]

