Photo credit: Andrew Kennedy

GENERICS AND THE
JAVA COLLECTIONS FRAMEWORK

Java Collections
|

Early versions of Java lacked generics...

interface Collection {
/* Return true if the collection contains o */
boolean contains(Object o);

/* Add o to the collection; return true if
*the collection is changed. */
boolean add(Object o0);

/* Remove o fromthe collection; return true if
* the collection is changed. */
boolean remove(Object o0);

Using Java Collections
|

This limitation was especially awkward because built-
in arrays do not have the same problem!

String [] a = ...
a[@] = (“Hello”)
a[1] = (“World”);

for (String s : a) {
System.out.println(s);
}

So, in the late 1990s Sun Microsystems initiated a
design process to add generics to the language...

10/20/15

Textbook and Homework

|

Generics: Appendix B

Generic types we discussed: Chapters 1-3, 15
Useful tutorial:

docs.oracle.com/javase /tutorial /extra/generics /index.html

Java Collections
|

The lack of generics was painful when using collections,
because programmers had to insert manual casts into
their code...

Collection c = ...
c.add(“Hello”)
c.add(“World”);

for (Object o : c) {

String s = (String) o;

System.out.println(s.length + “ : “ + s.length());
}

Arrays — Generics
| e

One can think of the array “brackets” as a kind of
parameterized type: a type-level function that takes
one type as input and yields another type as output

Object[] a = ...
String[] a =

Integer[] a = ...
Button[] a = ...

We should be able to do the same thing with object
types generated by classes!




Proposals for adding Generics to Java

>
S

4

PolyJ LOOJ

Generic Collections

With generics, the Collection interface becomes...

interface Collection<T> {
/* Return true if the collection contains x */
boolean contains(T x);

/* Add x to the collection; return true if
*the collection is changed. */
boolean add(T x);

/* Remove x fromthe collection; return true if
* the collection is changed. */
boolean remove(T Xx);

Using Java Collections

With generics, no casts are needed...

Collection<String> c = ...
c.add(“Hello”)
c.add(“World”);

for (String s : c¢) {
System.out.println(s.length + “ : “ + s.length());
}

Terminology: a type like Collection<String> is called
an instantiation of the parameterized type Collection.

Static Type checking

The compiler can automatically detect uses of
collections with incorrect types...

Collection<String> c = ...
c.add(“Hello”) /* Okay */
c.add(1979); /* Illegal: static error! */

Generally speaking, an instantiation like
Collection<String> behaves like the parameterized
type Collection<T> where all occurrences of T have
been substituted with String.

Subtyping

Subtyping extends naturally to generic types.

interface Collection<T> { ... }

interface List<T> extends Collection<T> { ... }
class LinkedList<T> implements List<T> { ... }
class ArraylList<T> implements List<T> { ... }

/* The following statements are all legal. */
List<String> 1 = new LinkedList<String>();
ArrayList<String> a = new ArraylList<String>();
Collection<String> ¢ = a;

l1=a

c=1;

Subtyping

String is a subtype of object so...
...is LinkedList<String> a subtype of LinkedList<Object>2

LinkedList<String> 1s= new LinkedList<String>();
LinkedList<Object> lo= new LinkedList<Object>();

lo= 1s; //0K, if subtypes
lo.add(2110); //0K: Integer subtype Object
String s = 1s.last(); //OK: elements of ls are strings

But what would happen at run-time if we were able to
actually execute this code?




Array Subtyping

Java’s type system allows the analogous rule for
arrays :-/

10/20/15

Printing Collections

Suppose we want to write a helper method to print
every value in a Collection<T>.

String[] as = new String[10];
Object[] ao= new Object[10];

ao = as; //0K, if subtypes
ao[@] = 2110; //0K: Integer subtype Object
String s =as[@]; //0K: elements of s are strings

What happens when this code is run?

It throws an ArrayStoreException!

void print(Collection<Object> c) {
for (Object x : c) {
System.out.println(x);
}
}

Collection<Integer> c = ...

c.add(42);

print(c) /* Illegal: Collection<Integer> is not a
& subtype of Collection<Object>! */

Wildcards

To get around this problem, Java’s designers added
wildcards to the language

void print(Collection<?> c) {
for (Object x : c) {
System.out.println(x);
}
}

Collection<Integer> c = ...
c.add(42);
print(c); /* Legall! */

Wildcards

Note that we cannot add values to collections whose
types are wildcards...

void doIt(Collection<?> c) {
c.add(42); /* Illegal! */
}

Collection<String> c = ...
doIt(c); /* Legal! */

One can think of Collection<2> as a “Collection of
unknown” values.

More generally, can’t use any methods of
Collection<T> where the T occurrs in a “negative”
position, like a parameter.

Bounded Wildcards

Sometimes it is useful to know some information about
a wildecard. Can do this by adding bounds...

Bounded Wildcards

Sometimes it is useful to know some information about
a wildcard. Can do using bounds...

void doIt(Collection<? extends Shape> c) {
c.draw(this);
}

Collection<Circle> c = ...
doIt(c); /* Legall */

void doIt(Collection<? extends Collection<?>> c) {
for(Collection<?> ci : c) {
for(Object x : ci) {
System.out.println(x);
}
}
}

Collection<String> ci = ...
Collection<Collection<String>> c = ...
c.add(ci);

doIt(c); /* Legall */




10/20/15

Generic Methods

Returning to the printing example, another option
would be to use a method-level type parameter...

<T> void print(Collection<T> c) {
for (T x : c) {
System.out.println(x);
}
}

Collection<Integer> c = ...
c.add(42);
print(c) /* More explicitly: this.<Integer>print(c) */

Appending an Array

Suppose we want to write a method to append each
element of an array to a collection.

<T> void m(T[] a, LinkedList<T> 1) {
for (int i= @; i < a.length, i++) {
l.add(a[i]);

}
List<Integer> c = ...

Integer[] a = ...
m(a, 1);

Printing with Cutoff

Suppose we want to print all elements that are “less
than” a given element, generically.

<T> void printLessThan(Collection<T> c, T x) {
for (Ty : c) {
if (/*y <=x 2?22 %/ )
System.out.println(y);

Interface Comparable

The Comparable<T> interface declares a method for
comparing one object to another.

interface Comparable<T> {
/* Return a negative number, @, or positive number
* depending on whether this value is less than,
* equal to, or greater than o */
int compareTo(T 0);

¥

Printing with Cutoff

Suppose we want to print all elements that are “less
than” a given element, generically.

<T extends Comparable<T>>
void printLessThan(Collection<T> c, T x) {
for (Ty : c) {
if (y.compareTo(x) <= @)
System.out.println(y);

lterators: How “foreach” works

The notation for (Something var: collection) { .. }
is syntactic sugar. It compiles into this “old code”:

Iterator<kE> i= collection.iterator();
while (_i.hasNext()) {
E var= i.Next();
Your code

The two ways of doing this are identical but the foreach loop is
nicer looking.

You can create your own iterable collections




java.util.Iterator<E> (an interface)

public boolean hasNext();

Return true if the enumeration has more elements
public E next();

Return the next element of the enumeration

Throw NoSuchElementException if no next element
public void remove();

Remove most recently returned element by next() from

the underlying collection

Throw IllegalStateException if next() not yet called or if

remove() already called since last next()

Throw UnsupportedOperationException if remove()

not supported

10/20/15

Efficiency Depends on Implementation

Object x= list.get (k);
O(1) time for ArrayList
O(k) time for LinkedList

list.remove (0) ;
O(n) time for ArrayList
O(1) time for LinkedList
if (set.contains(x))
O(1) expected time for HashSet
Of(log n) for TreeSet




