

Announcements

\square Prelim \#1 is tonight!

- Olin 155
$\square \mathrm{A}-\mathrm{L} \rightarrow 5: 30$
$\square M-Z \rightarrow 5: 30$
\square A4 will be posted today
\square Mid-semester TA evaluations are coming up; please participate! Your feedback will help our staff improve their teaching.

Outline

\square A4 Preview
\square Introduction to Trees

Readings and Homework

\square Textbook, Chapter 23, 24
\square Homework: A thought problem (draw pictures!)
\square Suppose you use trees to represent student schedules. For each student there would be a general tree with a root node containing student name and ID. The inner nodes in the tree represent courses, and the leaves represent the times/places where each course meets.
Given two such trees, how could you determine whether and where the two students might run into one-another?

Tree Overview

Tree: recursive data structure (similar to list)

- Each node may have zero or more successors (children)
Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root
Binary tree: tree in which each node can have at most two children: a left child and a right child

General tree

Not a tree

Binary tree

Binary trees were in Al!

You have seen a binary tree in A1.

A PhD object phd has one or two advisors. Here is an intellectual ancestral tree!

Tree terminology
M: root of this tree
G: root of the left subtree of M
B, H, J, N, S: leaves (their set of children \quad is empty)
$\mathrm{N}:$ left child of P ; S: right child of P
$\mathrm{P}:$ parent of N
M and $\mathrm{G}:$ ancestors of D
$\mathrm{P}, \mathrm{N}, \mathrm{S}:$ descendents of W
J is at depth 2 (i.e. length of path from root = no. of edges)
W is at height 2 (i.e. length of longest path to a leaf)
A collection of several trees is called a ...?

Class for general tree nodes

Use of trees: Represent expressions

In textual representation:
Parentheses show
hierarchical structure
In tree representation:
Hierarchy is explicit in
the structure of the tree
We'll talk more about expression and trees on Thursday
$((2+3)+(5+7))$

Recursion on trees
Trees are defined recursively. So recursive methods can be written to process trees in an obvious way
Base case $\quad \square$ empty tree \quad (null) \quad leaf
\quadRecursive case \square solve problem on left / right subtrees \square put solutions together to get solution for full tree

Binary Search Tree (BST)

If the tree data are ordered and no duplicate values: in every subtree,

All left descendents of node come before node All right descendents of node come after node Search is MUCH faster

/** Return true iff x if the datum in a node of tree t. Precondition: node is a BST */
public static boolean treeSearch (T x, TreeNode<T> t) (
if ($t==$ null) return false;
if (t.datum.equals(x)) return true;
if (t.datum.compareTo (x) >0)
return treeSearch (x, t.left);
else return treeSearch(x, t.right);

Searching in a Binary Tree

/** Return true iff x is the datum in a node of tree $\mathrm{t}^{* /}$ public static boolean treeSearch(Tx, TreeNode $<T>t)$ \{
if $(\mathrm{t}==$ null) return false;
if (t.datum.equals(x)) return true;
return treeSearch(x, t.left) || treeSearch(x, t.right);
\}

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively

Building a BST

Printing contents of BST

Because of ordering rules for a BST, it's easy to print the items in alphabetical order -Recursively print left subtree \square Print the node \square Recursively print right subtree	```/** Print BST t in alpha order */ private static void print(TreeNode<T> t) { if (t== null) return; print(t.left); System.out.print(t.datum); print(t.right); }```

Tree traversals	
"Walking" over whole tree is a tree traversal - Done often enough that there are standard names Previous example: inorder traversal - Process left subtree - Process root -Process right subtree Note: Can do other processing besides printing	Other standard kinds of traversals - preorder traversal - Process root - Process left subtree - Process right subtree - postorder traversal - Process left subtree - Process right subtree - Process root - level-order traversal - Not recursive uses a queue. We discuss later

Tree Summary

\square A tree is a recursive data structure

\square Each node has 0 or more successors (children)

- Each node except the root has at exactly one predecessor (parent)
\square All node are reachable from the root
\square A node with no children (or empty children) is called a leaf
\square Special case: binary tree
- Binary tree nodes have a left and a right child
- Either or both children can be empty (null)
\square Trees are useful in many situations, including exposing the recursive structure of natural language and computer programs

Some useful methods

```
/** Return true iff node t is a leaf */
public static boolean isLeaf(TreeNode<T> t) {
    return t!= null && t.left == null && t.right == null;
}
/** Return height of node t (postorder traversal) */
public static int height(TreeNode<T> t) {
    if (t== null) return -1; //empty tree
    if (isLeaf(t)) return 0;
    return 1 + Math.max(height(t.left), height(t.right));
}
/** Return number of nodes in t (postorder traversal) */
public static int nNodes(TreeNode}<\textrm{T}>\textrm{t})
    if (t== null) return 0;
    return 1 + nNodes(t.left) + nNodes(t.right);
}
```

Things to think about

What if we want to delete data from a BST?

A BST works great as long as it's balanced

How can we keep it
balanced? This turns out to
 be hard enough to motivate
us to create other kinds of
trees

