
10/5/15

1

TREES
Lecture 12
CS2110 – Fall 2015

Announcements

¨  Prelim #1 is tonight!
¤ Olin 155
¤ A-L è 5:30
¤ M-Z è 5:30

¨  A4 will be posted today
¨  Mid-semester TA evaluations are coming up; please

participate! Your feedback will help our staff
improve their teaching.

2

Outline

¨  A4 Preview
¨  Introduction to Trees

3

Readings and Homework

¨  Textbook, Chapter 23, 24

¨  Homework: A thought problem (draw pictures!)
¤ Suppose you use trees to represent student schedules.

For each student there would be a general tree with a
root node containing student name and ID. The inner
nodes in the tree represent courses, and the leaves
represent the times/places where each course meets.
Given two such trees, how could you determine whether
and where the two students might run into one-another?

4

Tree Overview
5

Tree: recursive data structure
(similar to list)

¤  Each node may have zero
or more successors (children)

¤  Each node has exactly one
predecessor (parent) except
the root, which has none

¤  All nodes are reachable
from root

Binary tree: tree in which each
node can have at most two
children: a left child and a
right child

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

Binary trees were in A1!

You have seen a binary tree in A1.

A PhD object phd has one or two advisors.
Here is an intellectual ancestral tree!
 phd

 ad1 ad2

 ad1 ad2 ad1

6

10/5/15

2

Tree terminology
7

M: root of this tree
G: root of the left subtree of M
B, H, J, N, S: leaves (their set of children
 is empty)
N: left child of P; S: right child of P
P: parent of N
M and G: ancestors of D
P, N, S: descendents of W
J is at depth 2 (i.e. length of path from root = no. of edges)
W is at height 2 (i.e. length of longest path to a leaf)
A collection of several trees is called a ...?

M

G W

P J D

N H B S

Class for binary tree node
8

class TreeNode<T> {
 private T datum;
 private TreeNode<T> left, right;

 /** Constructor: one node tree with datum x */
 public TreeNode (T d) { datum= d; }

 /** Constr: Tree with root value x, left tree l, right tree r */
 public TreeNode (T d, TreeNode<T> l, TreeNode<T> r) {
 datum= d; left= l; right= r;
 }
}

Points to left subtree
(null if empty)

Points to right subtree
(null if empty)

more methods: getDatum,
setDatum, getLeft, setLeft, etc.

Binary versus general tree

In a binary tree, each node has exactly two pointers: to the left
subtree and to the right subtree:

¤ One or both could be null, meaning the subtree is empty
(remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes
(and they need not be ordered)

¤ Very useful in some situations ...
¤  ... one of which may be in an assignment!

9

Class for general tree nodes

10

class GTreeNode<T> {
1.  Private T datum;
2.  private GTreeNode<T>[] children;
3.  //appropriate constructors, getters,
4.  //setters, etc.
}

5

4

7 8 9

2

7 8 3 1

General
tree

Parent contains an
array of its children

Applications of Trees
11

¨  Most languages (natural and computer) have a
recursive, hierarchical structure

¨  This structure is implicit in ordinary textual
representation

¨  Recursive structure can be made explicit by
representing sentences in the language as trees:
Abstract Syntax Trees (ASTs)

¨  ASTs are easier to optimize, generate code from, etc.
than textual representation

¨  A parser converts textual representations to AST

Use of trees: Represent expressions
12

In textual representation:
Parentheses show
hierarchical structure

In tree representation:
Hierarchy is explicit in
the structure of the tree

We’ll talk more about
expression and trees on
Thursday

-34 -34

- (2 + 3)

+

2 3

((2+3) + (5+7))

+

2 3 5 7

+

+

Text Tree Representation

-

10/5/15

3

Recursion on trees
13

Trees are defined recursively. So recursive methods can be
written to process trees in an obvious way

Base case
¤  empty tree (null)
¤  leaf

Recursive case
¤  solve problem on left / right subtrees
¤  put solutions together to get solution for full tree

Searching in a Binary Tree
14

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(Tx, TreeNode<T> t) {
 if (t == null) return false;
 if (t.datum.equals(x)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

9

8 3 5 7

2

0

� Analog of linear search in lists:
given tree and an object, find out if
object is stored in tree

� Easy to write recursively, harder to
write iteratively

Binary Search Tree (BST)
15

If the tree data are ordered and no duplicate values:
in every subtree,

All left descendents of node come before node
All right descendents of node come after node

Search is MUCH faster

2

0 3 7 9

5

8

/** Return true iff x if the datum in a node of tree t.
 Precondition: node is a BST */
public static boolean treeSearch (T x, TreeNode<T> t) {
 if (t== null) return false;

 if (t.datum.equals(x)) return true;

 if (t.datum.compareTo(x) > 0)
 return treeSearch(x, t.left);

 else return treeSearch(x, t.right);
}

Building a BST
16

¨  To insert a new item
¤  Pretend to look for the item
¤  Put the new node in the

place where you fall off the
tree

¨  This can be done using either
recursion or iteration

¨  Example
¤  Tree uses alphabetical order
¤ Months appear for insertion

in calendar order

jan

feb mar

apr may jun

jul

What can go wrong?
17

A BST makes searches very fast,
unless…

¤ Nodes are inserted in
increasing order

¤  In this case, we’re basically
building a linked list (with
some extra wasted space for
the left fields, which aren’t
being used)

BST works great if data arrives in
random order

jan

feb

mar

apr

may

jun

jul

Printing contents of BST
18

Because of ordering
rules for a BST, it’s easy
to print the items in
alphabetical order

¤ Recursively print
left subtree

¤ Print the node
¤ Recursively print

right subtree

/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
 if (t== null) return;
 print(t.left);
 System.out.print(t.datum);
 print(t.right);
}

10/5/15

4

Tree traversals

“Walking” over whole tree is
a tree traversal

¤  Done often enough that
there are standard names

 Previous example:
 inorder traversal

n Process left subtree
n Process root
n Process right subtree

Note: Can do other processing
besides printing

Other standard kinds of
traversals
§ preorder traversal

w Process root
w Process left subtree
w Process right subtree

§ postorder traversal
w Process left subtree
w Process right subtree
w Process root

§ level-order traversal
w Not recursive uses a queue.

We discuss later

19

Some useful methods
20

/** Return true iff node t is a leaf */
public static boolean isLeaf(TreeNode<T> t) {
 return t != null && t.left == null && t.right == null;
}
/** Return height of node t (postorder traversal) */
public static int height(TreeNode<T> t) {
 if (t== null) return -1; //empty tree
 if (isLeaf(t)) return 0;
 return 1 + Math.max(height(t.left), height(t.right));
}
/** Return number of nodes in t (postorder traversal) */
public static int nNodes(TreeNode<T> t) {
 if (t== null) return 0;
 return 1 + nNodes(t.left) + nNodes(t.right);
}

Useful facts about binary trees
21

Max # of nodes at depth d: 2d

If height of tree is h
¤ min # of nodes: h + 1
¤ max #of nodes in tree:
¤ 20 + … + 2h = 2h+1 – 1

Complete binary tree
¤ All levels of tree down to

a certain depth are
completely filled

5

4

7 8

2

0 4

depth

0

1

2

5

2

4
Height 2,
minimum number of nodes

Height 2,
maximum number of nodes

Things to think about
22

What if we want to delete
data from a BST?

A BST works great as long as
it’s balanced

How can we keep it
balanced? This turns out to
be hard enough to motivate
us to create other kinds of
trees

jan

feb mar

apr may jun

jul

Tree Summary
23

¨  A tree is a recursive data structure
¤  Each node has 0 or more successors (children)
¤  Each node except the root has at exactly one predecessor

(parent)
¤  All node are reachable from the root
¤  A node with no children (or empty children) is called a leaf

¨  Special case: binary tree
¤  Binary tree nodes have a left and a right child
¤  Either or both children can be empty (null)

¨  Trees are useful in many situations, including exposing the
recursive structure of natural language and computer
programs

