SEARCHING, SORTING, AND ASYMPTOTIC COMPLEXITY

Lecture 10
CS2110 – Fall 2015

Merge two adjacent sorted segments
/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {
 // code...
}

Mergesort
/** Sort b[h..k] */
public static void mergesort(int[] b, int h, int k) {
 if (size b[h..k] < 2) return;
 int t = (h+k)/2;
 mergesort(b, h, t);
 mergesort(b, t+1, k);
 merge(b, h, t, k);
}

QuickSort versus MergSort
/** Sort b[h..k] */
public static void QS(int[] b, int h, int k) {
 if (k - h < 1) return;
 int j = partition(b, h, k);
 QS(b, h, j-1);
 QS(b, j+1, k);
}

/** Sort b[h..k] */
public static void MS(int[] b, int h, int k) {
 if (k - h < 1) return;
 MS(b, h, (h+k)/2);
 MS(b, (h+k)/2 + 1, k);
 merge(b, h, (h+k)/2, k);
}

One processes the array then recurses.
One recurses then processes the array.
Readings, Homework

- Textbook: Chapter 4
- Homework:
 - Recall our discussion of linked lists and A2.
 - What is the worst case complexity for appending an item to a linked list? For testing to see if the list contains X? What would be the best case complexity for these operations?
 - If we were going to talk about complexity (speed) for operating on a list, which makes more sense: worst-case, average-case, or best-case complexity? Why?

What Makes a Good Algorithm?

Suppose you have two possible algorithms or ADT implementations that do the same thing; which is better?

What do we mean by better?
- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?

How do we measure time and space of an algorithm?

Basic Step: One “constant time” operation

- Input/output of scalar value
- Access value of scalar variable, array element, or object field
- Assign to variable, array element, or object field
- Do one arithmetic or logical operation
- Method call (not counting argument evaluation and execution of method body)

 - If-statement: number of basic steps on branch that is executed
 - Loop: (number of basic steps in loop body) * (number of iterations) – also bookkeeping
 - Method: number of basic steps in method body (include steps needed to prepare stack-frame)

Sample Problem: Searching

Second solution: Binary Search

- **b** is sorted. Return h satisfying b[0..h] <= v < b[h+1..]

  ```java
  static int bsearch(int[] b, int v) {
    int h=-1;
    int k=b.length;
    while (h+1 != k) {
      int e=(h+k)/2;
      if (b[e] <= v)  h= e;
      else k= e;
    }
    return h;
  }
  ```

Number of iterations (always the same): \(\log b.\text{length}\)

Therefore, \(\log b.\text{length}\) array comparisons

Counting basic steps in worst-case execution

Linear Search Let \(n = b.\text{length}\)

<table>
<thead>
<tr>
<th>Basic step</th>
<th># times executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>i= 0</td>
<td>1</td>
</tr>
<tr>
<td>i < b.length</td>
<td>n+1</td>
</tr>
<tr>
<td>i++</td>
<td>n</td>
</tr>
<tr>
<td>b[i] == v</td>
<td>n</td>
</tr>
<tr>
<td>return true</td>
<td>0</td>
</tr>
<tr>
<td>return false</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>3n + 3</td>
</tr>
</tbody>
</table>

We sometimes simplify counting by counting only important things. Here, it’s the number of array element comparisons \(b[i] == v\). That’s the number of loop iterations: \(n\).

What do we want from a definition of “runtime complexity”?

1. Distinguish among cases for large \(n\), not small \(n\)
2. Distinguish among important cases, like
 - \(n*n\) basic operations
 - \(n\) basic operations
 - \(\log n\) basic operations
 - 5 basic operations
3. Don’t distinguish among trivially different cases.
 - 5 or 50 operations
 - \(n\), \(n+2\), or \(4n\) operations
Definition of $O(\ldots)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants c and N such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

Graphical view

Get out far enough – for $n \geq N$ – $c \cdot g(n)$ is bigger than $f(n)$

What do we want from a definition of “runtime complexity”?

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants c and N such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

Roughly, $f(n)$ is $O(g(n))$ means that $f(n)$ grows like $g(n)$ or slower, to within a constant factor

Prove that $(n^2 + n)$ is $O(n^2)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants c and N such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

Example: Prove that $(n^2 + n)$ is $O(n^2)$

Methodology:

Start with $f(n)$ and slowly transform into $c \cdot g(n)$:
- Use $=$ and $<=$ and $<$ steps
- At appropriate point, can choose N to help calculation
- At appropriate point, can choose c to help calculation

Choose $N = 1$ and $c = 2$

Prove that $100n + \log n$ is $O(n)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants c and N such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

$f(n)$

\[
= \quad <\text{put in what } f(n) \text{ is} >
\]

\[
100n + \log n
\]

\[
\leq \quad <\text{We know } \log n \leq n \text{ for } n \geq 1 >
\]

\[
100n + n = \quad <\text{arith}>
\]

\[
101n = \quad <g(n) = n>
\]

\[
101 \cdot g(n)
\]

Prove that $100n + \log n$ is $O(n)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants c and N such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$

$f(n)$

\[
= \quad <\text{put in what } f(n) \text{ is} >
\]

\[
100n + \log n
\]

\[
\leq \quad <\text{We know } \log n \leq n \text{ for } n \geq 1 >
\]

\[
100n + n = \quad <\text{arith}>
\]

\[
101n = \quad <g(n) = n>
\]

\[
101 \cdot g(n)
\]

O(\ldots) Examples

Let $f(n) = 3n^2 + 6n - 7$

- $f(n)$ is $O(n^2)$
- $f(n)$ is $O(n^2)$
- $f(n)$ is $O(n^2)$
- \ldots

$p(n) = 4n \log n + 34n - 89$

- $p(n)$ is $O(n \log n)$
- $p(n)$ is $O(n^2)$
- $p(n)$ is $O(n^2)$

$h(n) = 20 \cdot 2^n + 40n$

- $h(n)$ is $O(2^n)$
- $o(n) = 34$
- $o(n)$ is $O(1)$

Only the leading term (the term that grows most rapidly) matters

If it’s $O(n^2)$, it’s also $O(n^2)$ etc! However, we always use the smallest one
Problem-size examples

Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

<table>
<thead>
<tr>
<th>alg</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>O(n)</td>
<td>31</td>
<td>244</td>
<td>1897</td>
</tr>
<tr>
<td>O(n log n)</td>
<td>140</td>
<td>4893</td>
<td>200,000</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>18</td>
<td>144</td>
<td>1096</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>10</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>O(2^n)</td>
<td>9</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>

Commonly Seen Time Bounds

<table>
<thead>
<tr>
<th>Time Bound</th>
<th>Order Of</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>constant</td>
<td>excellent</td>
</tr>
<tr>
<td>O(log n)</td>
<td>logarithmic</td>
<td>excellent</td>
</tr>
<tr>
<td>O(n)</td>
<td>linear</td>
<td>good</td>
</tr>
<tr>
<td>O(n log n)</td>
<td>n log n</td>
<td>pretty good</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>quadratic</td>
<td>OK</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>cubic</td>
<td>maybe OK</td>
</tr>
<tr>
<td>O(2^n)</td>
<td>exponential</td>
<td>too slow</td>
</tr>
</tbody>
</table>

Worst-Case/Expected-Case Bounds

May be difficult to determine time bounds for all imaginable inputs of size n

Simplifying assumption #4:
Determine number of steps for either
\- worst-case or
\- expected-case or
\- average case

- **Worst-case**
 - Determine how much time is needed for the worst possible input of size n
- **Expected-case**
 - Determine how much time is needed on average for all inputs of size n

Simplifying Assumptions

Use the size of the input rather than the input itself – n

Count the number of "basic steps” rather than computing exact time

Ignore multiplicative constants and small inputs
(order-of, big-O)

Determine number of steps for either
\- worst-case
\- expected-case

These assumptions allow us to analyze algorithms effectively

Worst-Case Analysis of Searching

Linear Search

```java
// return true if v is in b
static boolean find(int[] b, int v) {
    for (int x : b) {
        if (x == v) return true;
    }
    return false;
}
```

Expected time: O(#b)

Binary Search

```java
// Return h that satisfies
// b[0..h] <= v < b[h+1..]
static boolean bsearch(int[] b, int v) {
    int h = -1; int t = b.length;
    while ( h != t-1 ) {
        int e = (h+t)/2;
        if (b[e] <= v) h = e;
        else t = e;
    }
}
```

Always -(log #b+1) iterations. Worst-case and expected times: O(log #b)

Linear vs. Binary Search

![Linear vs. Binary Search graph](image-url)
Analysis of Matrix Multiplication

Multiply \(n \times n \) matrices \(A \) and \(B \):

Convention, matrix problems measured in terms of \(n \), the number of rows, columns
- Input size is really \(2n^2 \), not \(n \)
- Worst-case time: \(O(n^3) \)
- Expected-case time: \(O(n^3) \)

```c
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++) {
        c[i][j] = 0;
        for (k = 0; k < n; k++)
            c[i][j] += a[i][k]*b[k][j];
    }
```

Remarks

Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity
- Example: you can usually ignore everything that is not in the innermost loop. Why?

One difficulty:
- Determining runtime for recursive programs
 Depends on the depth of recursion

Why bother with runtime analysis?

Computers so fast that we can do whatever we want using simple algorithms and data structures, right?
Not really — data-structure/algorithm improvements can be a big win
Scenario:
- \(A \) runs in \(n^2 \) msec
- \(A' \) runs in \(n^2/10 \) msec
- \(B \) runs in \(10 \log n \) msec

Problem of size \(n=10^3 \)
- \(A: 10^6 \) sec \(\approx \) 17 minutes
- \(A': 10^5 \) sec \(\approx \) 1.7 minutes
- \(B: 10^6 \) sec \(\approx \) 1.7 minutes

Problem of size \(n=10^6 \)
- \(A: 10^9 \) sec \(\approx \) 30 years
- \(A': 10^8 \) sec \(\approx \) 3 years
- \(B: 2 \cdot 10^7 \) sec \(\approx 2 \) days

1 day = 86,400 sec \(\approx 10^5 \) sec
1,000 days \(\approx 3 \) years

Algorithms for the Human Genome

Human genome
- \(3.5 \) billion nucleotides
 \(\sim \) 1 Gb

@1 base-pair
 instruction/msec
- \(n^2 \rightarrow 388445 \) years
- \(n \log n \rightarrow 30.824 \) hours
- \(n \rightarrow 1 \) hour

Limitations of Runtime Analysis

Big-O can hide a very large constant
- Example: selection
- Example: small problems

The specific problem you want to solve may not be the worst case
- Example: Simplex method for linear programming

Your program may not run often enough to make analysis worthwhile
- Example: one-shot vs. every day
- You may be analyzing and improving the wrong part of the program
 - Very common situation
 - Should use profiling tools

What you need to know / be able to do

- Know the definition of \(f(n) \) is \(O(g(n)) \)
- Be able to prove that some function \(f(n) \) is \(O(g(n)) \). The simplest way is as done on two slides above.
- Know worst-case and average (expected) case \(O(\ldots) \) of basic searching/sorting algorithms: linear/binary search, partition alg of quicksort, insertion sort, selection sort, quicksort, mergesort.
- Be able to look at an algorithm and figure out its worst case \(O(\ldots) \) based on counting basic steps or things like array-element swaps
Goal: Determine minimum time required to sort n items

Note: we want worst-case, not best-case time

- Best-case doesn’t tell us much. E.g. Insertion Sort takes O(n) time on already-sorted input
- Want to know worst-case time for best possible algorithm

How can we prove anything about the best possible algorithm?

- Want to find characteristics that are common to all sorting algorithms
- Limit attention to comparison-based algorithms and try to count number of comparisons

Comparison Trees

- Comparison-based algorithms make decisions based on comparison of data elements
- Gives a comparison tree
- If algorithm fails to terminate for some input, comparison tree is infinite
- Height of comparison tree represents worst-case number of comparisons for that algorithm
- Can show: Any correct comparison-based algorithm must make at least n \(\log n \) comparisons in the worst case

Lower Bound for Comparison Sorting

- Say we have a correct comparison-based algorithm
- Suppose we want to sort the elements in an array \(b[] \)
- Assume the elements of \(b[] \) are distinct
- Any permutation of the elements is initially possible
- When done, \(b[] \) is sorted
- But the algorithm could not have taken the same path in the comparison tree on different input permutations

How many input permutations are possible? \(n! \sim 2^n \log n \)

For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree.

To have at least \(n! \sim 2^n \log n \) leaves, it must have height at least \(n \log n \) (since it is only binary branching, the number of nodes at most doubles at every depth).

Therefore its longest path must be of length at least \(n \log n \), and that is its worst-case running time.

Mergesort

```java
/** Sort b[h..k] */
public static mergesort(
    int[] b, int h, int k)
{  
    if (size b[h..k] < 2) return;
    int t = (h+k)/2;
    mergesort(b, h, t);
    mergesort(b, t+1, k);
    merge(b, h, t, k);
}
```

Runtime recurrence

- \(T(n) \): time to sort array of size \(n \)
 - \(T(1) = 1 \)
 - \(T(n) = 2T(n/2) + O(n) \)

Can show by induction that \(T(n) \) is \(O(n \log n) \)

Alternatively, can see that \(T(n) \) is \(O(n \log n) \) by looking at tree of recursive calls.