
9/24/15

1

SEARCHING AND SORTING
HINT AT ASYMPTOTIC COMPLEXITY

Lecture 9
CS2110 – Fall 2015

We may not cover
all this material

Miscellaneous

¨  Prelim a week from now. Thursday night. By tonight, all people
with conflicts should either have emailed Megan or completed
assignment P1Conflict. (36 did so, till now.)
Review session Sunday 1-3PM, Kimball B11. Next week’s
recitation also a review.

¨  A3 due Monday night. Group early! Only 328 views of the
piazza A3 FAQ.

¨  Piazza Supplemental study material. We will be putting
something on it soon about loop invariants –up to last lecture.

¨  Sorry for the mistakes in uploading todays’ lecture to the CMS.
My mistake. Usually I check when I upload something. This time,
in a hurry, I didn’t.

2

Last lecture: binary search

3

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

inv: b
0 h t b.length
 <= v ? > v

h= –1; t= b.length;
while (h != t–1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;
 else t= e;
}

Methodology:
1.  Draw the invariant as a

combination of pre and post
2.  Develop loop using 4 loopy

questions.

Practice doing this!

4

Binary search: find position h of v = 5

1 4 4 5 6 6 8 8 10 11 12

pre: array is sorted

post: <= v > v h

1 4 4 5 6 6 8 8 10 11 12

1 4 4 5 6 6 8 8 10 11 12

1 4 4 5 6 6 8 8 10 11 12

1 4 4 5 6 6 8 8 10 11 12

h = -1 t = 11

h = -1 t = 5

h = 2 t = 5

h = 3 t = 5

h = 3 t = 4

1 4 4 5 6 6 8 8 10 11 12

Loop invariant:

entries h and
below are <= v

entries t and
above are > v

entries between
h and t are sorted

5

Binary search: an O(log n) algorithm

5

inv: b
0 h t b.length = n
 <= v ? > v

h= –1; t= b.length;
while (h != t–1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;
 else t= e;
}

Suppose initially: b.length = 2k – 1
Initially, h = -1, t = 2k -1, t - h = 2k
Can show that one iteration sets h or t so
that t - h = 2k-1
 e.g. Set e to (h+t)/2 = (2k – 2)/2 = 2k-1 – 1
 Set t to e, i.e. to 2k-1 – 1
 Then t - h = 2k-1 – 1 + 1 = 2k-1
Careful calculation shows that:
 each iteration halves t – h !!

Initially t - h = 2k
Loop iterates
exactly k times

6

Binary search: an O(log n) algorithm
Search array with 32767 elements, only 15 iterations!

Bsearch:
h= –1; t= b.length;
while (h != t–1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;
 else t= e;
}

If n = 2k, k is called log(n)
That’s the base 2 logarithm
n log(n)
1 = 20 0
2 = 21 1
4 = 22 2
8 = 23 3
31768 = 215 15 Each iteration takes constant time

(a few assignments and an if).
Bsearch executes ~log n iterations for an array of size n. So the
number of assignments and if-tests made is proportional to log n.
Therefore, Bsearch is called an order log n algorithm, written
O(log n). (We’ll formalize this notation later.)

9/24/15

2

Linear search: Find first position of v in b (if in)
7

pre: b
0 b.length
 ?

v not here ? post: b
0 h b.length

 and h = b.length or b[h] = v

Store in h to truthify:

inv: b
0 h b.length
v not here ?

h= 0;
while (h != b.length && b[h] != v)
 h= h+1;

loopy question 1? h= 0;

loopy question 2?
Stop when this is true

loopy question 3? h= h+1;

loopy question 4? OK! B: h != b.length && b[h] != v

Linear search: Find first position of v in b (if in)
8

pre: b
0 b.length
 ?

v not here ? post: b
0 h b.length

 and h = b.length or b[h] = v

Store in h to truthify:

inv: b
0 h b.length
v not here ?

h= 0;
while (h != b.length && b[h] != v)
 h= h+1;

Worst case: for array of size
n, requires n iterations, each
taking constant time.
Worst-case time: O(n).

Expected or average time?
n/2 iterations. O(n/2) —is
also O(n)

Looking at execution speed
9

Process an array of size n

size n 0 1 2 3 …

Number of
operations
executed

Constant time

n ops

n + 2 ops

2n + 2 ops
n*n ops

2n+2, n+2, n are all “order n” O(n)
Called linear in n, proportional to n

InsertionSort

10

pre: b
0 b.length
 ?

post: b
0 b.length
 sorted

inv:

 or: b[0..i-1] is sorted

b
0 i b.length
 sorted ?

A loop that processes
elements of an array

in increasing order
has this invariant

inv: b
0 i b.length
 processed ?

Each iteration, i= i+1; How to keep inv true?

11

inv: b
0 i b.length
 sorted ?

b
0 i b.length
 2 5 5 5 7 3 ? e.g.

Push b[i] down to its shortest position in b[0..i], then increase i

b
0 i b.length
 2 3 5 5 5 7 ?

Will take time proportional to the number of swaps needed

12 12

inv: b
0 i b.length
 sorted ?

b
0 i b.length
 2 5 5 5 7 3 ? e.g.

Push b[i] to its
sorted position
in b[0..i], then
increase i

b
0 i b.length
 2 3 5 5 5 7 ?

What to do in each iteration?

 2 5 5 5 3 7 ?

 2 5 5 3 5 7 ?

 2 5 3 5 5 7 ?

 2 3 5 5 5 7 ?

Loop
body

(inv true
before

and after)

9/24/15

3

InsertionSort
13

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 1; i < b.length; i= i+1) {
 Push b[i] down to its sorted position

 in b[0..i]
}

Many people sort cards this way
Works well when input is nearly
sorted

Note English
statement in body.
Abstraction. Says

what to do, not how.

This is the best way
to present it. Later,

show how to
implement that

with a loop

InsertionSort
14

� Worst-case: O(n2)
 (reverse-sorted input)

� Best-case: O(n)
 (sorted input)

� Expected case: O(n2)

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 1; i < b.length; i= i+1) {
 Push b[i] down to its sorted position

 in b[0..i]
}

Pushing b[i] down can take i swaps.
Worst case takes
 1 + 2 + 3 + … n-1 = (n-1)*n/2
Swaps. Let n = b.length

SelectionSort

15

pre: b
0 b.length
 ?

post: b
0 b.length
 sorted

inv: b
0 i b.length
 sorted , <= b[i..] >= b[0..i-1] Additional

term in
invariant Keep invariant true while making progress?

e.g.: b
0 i b.length
 1 2 3 4 5 6 9 9 9 7 8 6 9

Increasing i by 1 keeps inv true only if b[i] is min of b[i..]

SelectionSort

16

Another common way for
people to sort cards

Runtime
§ Worst-case O(n2)
§ Best-case O(n2)
§ Expected-case O(n2)

//sort b[], an array of int
// inv: b[0..i-1] sorted
// b[0..i-1] <= b[i..]
for (int i= 1; i < b.length; i= i+1) {
 int m= index of minimum of b[i..];
 Swap b[i] and b[m];
}

sorted, smaller values larger values b
0 i length

Each iteration, swap min value of this section into b[i]

Swapping b[i] and b[m]

// Swap b[i] and b[m]
int t= b[i];
b[i]= b[m];
b[m]= t;

17

Partition algorithm of quicksort
18

Swap array values around until b[h..k] looks like this:

x ?
h h+1 k

 <= x x >= x
h j k

pre:

post:

x is called
the pivot

9/24/15

4

20 31 24 19 45 56 4 20 5 72 14 99
19

pivot partition
j

 19 4 5 14 20 31 24 45 56 20 72 99

Not yet
sorted

Not yet
sorted

these can be
in any order

these can be
in any order The 20 could

be in the other
partition

Partition algorithm
20

x ?
h h+1 k

 <= x x >= x
h j k

b

b

 <= x x ? >= x
h j t k

b

pre:

post:

Combine pre and post to get an invariant

invariant
needs at

least 4
sections

Partition algorithm
21

 <= x x ? >= x
h j t k

b

j= h; t= k;
while (j < t) {
 if (b[j+1] <= b[j]) {
 Swap b[j+1] and b[j]; j= j+1;
 } else {
 Swap b[j+1] and b[t]; t= t-1;
 }
}

Terminate when j = t,
so the “?” segment is
empty, so diagram
looks like result
diagram

Initially, with j = h
and t = k, this
diagram looks like
the start diagram

Takes linear time: O(k+1-h)

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;

Function does the
partition algorithm and
returns position j of pivot

int j= partition(b, h, k);
 // We know b[h..j–1] <= b[j] <= b[j+1..k]

}

QuickSort procedure
22

Base case

//Sort b[h..j-1] and b[j+1..k]

QS(b, h, j-1);
QS(b, j+1, k);

QuickSort
23

Quicksort developed by Sir Tony Hoare (he was
knighted by the Queen of England for his
contributions to education and CS).
81 years old.
Developed Quicksort in 1958. But he could not
explain it to his colleague, so he gave up on it.
Later, he saw a draft of the new language Algol 58 (which became
Algol 60). It had recursive procedures. First time in a procedural
programming language. “Ah!,” he said. “I know how to write it
better now.” 15 minutes later, his colleague also understood it.

Worst case quicksort: pivot always smallest value
24

x0 >= x0
j

x0 x1 >= x1
 j

x0 x1 x2 >= x2
 j

partioning at depth 0

partioning at depth 1

partioning at depth 2

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;
 int j= partition(b, h, k);
 QS(b, h, j-1); QS(b, j+1, k);

9/24/15

5

Best case quicksort: pivot always middle value
25

 <= x0 x0 >= x0
0 j n

depth 0. 1 segment of
size ~n to partition.

<=x1 x1 >= x1 x0 <=x2 x2 >=x2 Depth 2. 2 segments of
size ~n/2 to partition.

Depth 3. 4 segments of
size ~n/4 to partition.

Max depth: about log n. Time to partition on each level: ~n
Total time: O(n log n).

Average time for Quicksort: n log n. Difficult calculation

QuickSort procedure
26

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;
 int j= partition(b, h, k);
 // We know b[h..j–1] <= b[j] <= b[j+1..k]
 // Sort b[h..j-1] and b[j+1..k]
 QS(b, h, j-1);
 QS(b, j+1, k);
}

Worst-case: quadratic
Average-case: O(n log n)

Worst-case space: O(n*n)! --depth of
 recursion can be n

 Can rewrite it to have space O(log n)
Average-case: O(n * log n)

Partition algorithm
27

Key issue:
How to choose a pivot?

Choosing pivot
§ Ideal pivot: the median, since

it splits array in half
But computing median of
unsorted array is O(n), quite
complicated
Popular heuristics: Use
w  first array value (not good)
w  middle array value
w  median of first, middle, last,

 values GOOD!
w Choose a random element

Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always
the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some
recursively

28

Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always
the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some
recursively

29

QuickSort with logarithmic space
30

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 int h1= h; int k1= k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 Reduce the size of b[h1..k1], keeping inv true
 }
}

9/24/15

6

QuickSort with logarithmic space
31

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 int h1= h; int k1= k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 int j= partition(b, h1, k1);
 // b[h1..j-1] <= b[j] <= b[j+1..k1]
 if (b[h1..j-1] smaller than b[j+1..k1])
 { QS(b, h, j-1); h1= j+1; }
 else
 {QS(b, j+1, k1); k1= j-1; }
 }
}

Only the smaller
segment is sorted

recursively. If b[h1..k1]
has size n, the smaller

segment has size < n/2.
 Therefore, depth of
recursion is at most log n

