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SEARCHING AND SORTING 
HINT AT ASYMPTOTIC COMPLEXITY 

Lecture 9 
CS2110 – Fall 2015 

We may not cover 
all this material 

Miscellaneous 

¨  Prelim a week from now. Thursday night. By tonight, all people 
with conflicts should either have emailed Megan or completed 
assignment P1Conflict. (36 did so, till now.) 
Review session Sunday 1-3PM, Kimball B11. Next week’s 
recitation also a review. 

¨  A3 due Monday night. Group early! Only 328 views of the 
piazza A3 FAQ. 

¨  Piazza Supplemental study material. We will be putting 
something on it soon about loop invariants –up to last lecture. 

¨  Sorry for the mistakes in uploading todays’ lecture to the CMS. 
My mistake. Usually I check when I upload something. This time, 
in a hurry, I didn’t. 
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Last lecture: binary search 
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         ?                                 pre: b 
0                       b.length 

post: b 
0       h               b.length 
  <= v      > v                                 

inv: b 
0        h                t             b.length 
  <= v          ?         > v                                 

h= –1;  t= b.length; 
while  (h != t–1) { 
     int  e=  (h+t)/2; 
     if (b[e] <= v)  h=  e; 
     else  t=  e; 
} 

Methodology: 
1.  Draw the invariant as a 

combination of pre and post 
2.  Develop loop using 4 loopy 

questions. 

Practice doing this! 
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Binary search: find position h of v = 5 

1 4 4 5 6 6 8 8 10 11 12 

pre: array is sorted 

post: <= v > v h 

1 4 4 5 6 6 8 8 10 11 12 

1 4 4 5 6 6 8 8 10 11 12 

1 4 4 5 6 6 8 8 10 11 12 

1 4 4 5 6 6 8 8 10 11 12 

h = -1 t = 11 

h = -1 t = 5 

h = 2 t = 5 

h = 3 t = 5 

h = 3 t = 4 

1 4 4 5 6 6 8 8 10 11 12 

Loop invariant: 
 
entries h and 
below are <= v 
 
entries t and 
above are > v 
 
entries between 
h and t are sorted 
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Binary search: an O(log n) algorithm 
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inv: b 
0        h                t             b.length = n 
  <= v          ?         > v                                 

h= –1;  t= b.length; 
while  (h != t–1) { 
     int  e=  (h+t)/2; 
     if (b[e] <= v)  h=  e; 
     else  t=  e; 
} 

Suppose initially: b.length = 2k – 1 
Initially, h = -1, t = 2k -1,  t - h = 2k 
Can show that one iteration sets h or t so 
that  t - h = 2k-1 
   e.g. Set e to (h+t)/2 = (2k – 2)/2 = 2k-1 – 1 
   Set t to e, i.e. to  2k-1 – 1 
   Then  t - h =  2k-1 – 1 + 1 = 2k-1 
Careful calculation shows that: 
     each iteration halves t – h !! 

Initially  t - h = 2k 
Loop iterates 
exactly k times 
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Binary search: an O(log n) algorithm 
Search array with 32767 elements, only 15 iterations! 

Bsearch: 
h= –1;  t= b.length; 
while  (h != t–1) { 
     int  e=  (h+t)/2; 
     if (b[e] <= v)  h=  e; 
     else  t=  e; 
} 

If n = 2k,  k is called log(n) 
That’s the base 2 logarithm 
n                  log(n) 
1 = 20       0 
2 = 21          1 
4 = 22        2 
8 = 23         3 
31768 = 215      15 Each iteration takes constant time 

(a few assignments and an if). 
Bsearch executes ~log n iterations for an array of size n. So the 
number of assignments and if-tests made is proportional to log n.  
Therefore, Bsearch is called an order log n algorithm, written 
O(log n). (We’ll formalize this notation later.) 
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Linear search: Find first position of v in b (if in) 
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pre: b
0                          b.length 
        ?                                 

v not here    ?                                 post: b 
0                 h        b.length 

     and      h = b.length or b[h] = v  

Store in h to truthify: 

inv: b 
0                h          b.length 
v not here    ?                                 

h= 0; 
while (h != b.length && b[h] != v) 
      h= h+1; 

loopy question 1?     h= 0; 

loopy question 2?      
Stop when this is true 

loopy question 3?  h= h+1;      

loopy question 4?       OK!      B:  h != b.length  &&  b[h] != v  

Linear search: Find first position of v in b (if in) 
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pre: b
0                          b.length 
        ?                                 

v not here    ?                                 post: b 
0                 h        b.length 

     and      h = b.length or b[h] = v  

Store in h to truthify: 

inv: b 
0                h         b.length 
v not here    ?                                 

h= 0; 
while (h != b.length && b[h] != v) 
      h= h+1; 

Worst case: for array of size 
n, requires n iterations, each 
taking constant time. 
Worst-case time: O(n). 
 
Expected or average time? 
n/2 iterations. O(n/2) —is 
also O(n) 

Looking at execution speed 
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Process an array of size n 

size n 0  1  2  3  … 

Number of 
operations 
executed 

Constant time 

n ops 

n + 2 ops 

2n + 2 ops 
n*n ops 

2n+2, n+2, n are all “order n” O(n) 
Called linear in n, proportional to n 

InsertionSort 
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pre: b 
0                                                             b.length 
                           ?                                 

post: b 
0                                                             b.length 
                           sorted                                 

inv: 

 or:       b[0..i-1] is sorted 

b 
0                         i                                   b.length 
        sorted                     ?                                         

A loop that processes 
elements of an array 

in increasing order 
has this invariant 

inv: b 
0                  i             b.length 
 processed           ?                                         

Each iteration, i= i+1; How to keep inv true? 
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inv: b 
0                         i                                   b.length 
        sorted                     ?                                         

b 
0                         i                                   b.length 
 2   5   5   5   7    3     ?                                         e.g. 

Push b[i] down to its shortest position in b[0..i], then increase i 

b 
0                             i                               b.length 
 2   3   5   5   5    7     ?                                         

Will take time proportional to the number of swaps needed 
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inv: b 
0                         i                                   b.length 
        sorted                     ?                                         

b 
0                         i                                   b.length 
 2   5   5   5   7    3     ?                                         e.g. 

Push b[i] to its 
sorted position 
in b[0..i], then 
increase i 

b 
0                              i                              b.length 
 2   3   5   5   5   7              ?                                         

What to do in each iteration? 

 2   5   5   5   3    7     ?                                         

 2   5   5   3   5    7     ?                                         

 2   5   3   5   5    7     ?                                         

 2   3   5   5   5    7     ?                                         

Loop 
body 

(inv true 
before 

and after) 
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InsertionSort 
13 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 1; i < b.length; i= i+1) { 
    Push b[i] down to its sorted position 

  in b[0..i] 
} 

Many people sort cards this way 
Works well when input is nearly 
sorted 

Note English 
statement in body. 
Abstraction. Says 

what to do, not how. 
 

This is the best way 
to present it. Later, 

show how to 
implement that  

with a loop 

InsertionSort 
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� Worst-case: O(n2) 
   (reverse-sorted input) 

� Best-case: O(n) 
  (sorted input) 

� Expected case: O(n2) 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 1; i < b.length; i= i+1) { 
    Push b[i] down to its sorted position 

  in b[0..i] 
} 

Pushing b[i] down can take i swaps. 
Worst case takes  
     1  + 2  +  3  +  …  n-1   =   (n-1)*n/2 
Swaps. Let n = b.length 

SelectionSort 
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pre: b 
0                                                             b.length 
                           ?                                 

post: b 
0                                                             b.length 
                           sorted                                 

inv: b 
0                              i                              b.length 
  sorted                                                              , <= b[i..]        >= b[0..i-1] Additional 

term in 
invariant Keep invariant true while making progress? 

e.g.: b 
0                              i                              b.length 
 1   2   3   4   5   6    9  9  9  7  8  6  9  

Increasing i by 1 keeps inv true only if b[i] is min of b[i..] 

SelectionSort 
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Another common way for 
people to sort cards 

Runtime 
§ Worst-case O(n2) 
§ Best-case O(n2) 
§ Expected-case O(n2) 

//sort b[], an array of int 
// inv: b[0..i-1] sorted 
//         b[0..i-1]  <=  b[i..] 
for (int i= 1; i < b.length; i= i+1) { 
   int m= index of minimum of b[i..]; 
   Swap b[i] and b[m]; 
} 

sorted, smaller values         larger values b 
0                                    i                                 length 

Each iteration, swap min value of this section into b[i] 

Swapping b[i] and b[m] 

// Swap b[i] and b[m] 
int t= b[i]; 
b[i]= b[m]; 
b[m]= t; 
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Partition algorithm of quicksort 
18 

 
 

 
 

Swap array values around until b[h..k] looks like this: 
 
 
 
 

x                          ?                      
h   h+1                                                 k             

        <= x                x           >= x                                                
h                              j                           k             

pre: 

post: 

x is called 
the pivot 
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20   31   24  19  45   56    4    20    5    72  14   99 
19 

pivot partition 
j 

 19   4     5   14    20   31  24   45   56   20   72  99      

Not yet 
sorted 

Not yet 
sorted 

these can be 
in any order 

these can be 
in any order The 20 could 

be in the other 
partition 

Partition algorithm 
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x                          ?                      
h   h+1                                                 k             

        <= x                x           >= x                                                
h                              j                           k             

b 

b 

   <= x            x      ?            >= x          
h                     j                t                   k             

b 

pre: 

post: 

Combine pre and post to get an invariant 

invariant 
needs at 

least 4 
sections 

Partition algorithm 
21 

   <= x            x      ?            >= x          
h                     j                t                   k             

b 

j= h; t= k; 
while (j < t) { 
    if (b[j+1] <= b[j]) { 
         Swap b[j+1] and b[j];   j= j+1; 
    } else { 
         Swap b[j+1] and b[t];   t= t-1; 
    } 
} 

Terminate when j = t, 
so the “?” segment is 
empty, so diagram 
looks like result 
diagram 

Initially, with j = h 
and t = k, this 
diagram looks like 
the start diagram 

Takes linear time: O(k+1-h) 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    

Function does the 
partition algorithm and 
returns position j of pivot 

int j=  partition(b, h, k); 
    // We know b[h..j–1] <= b[j] <= b[j+1..k] 
 
 
 
} 

QuickSort procedure
22 

Base case 

//Sort b[h..j-1] and b[j+1..k] 

QS(b, h, j-1);  
QS(b, j+1, k); 

QuickSort 
23 

Quicksort developed by Sir Tony Hoare (he was 
knighted by the Queen of England for his 
contributions to education and CS). 
81 years old. 
Developed Quicksort in 1958. But he could not 
explain it to his colleague, so he gave up on it. 
Later, he saw a draft of the new language Algol 58 (which became 
Algol 60). It had recursive procedures. First time in a procedural 
programming language. “Ah!,” he said. “I know how to write it 
better now.” 15 minutes later, his colleague also understood it. 

Worst case quicksort: pivot always smallest value 
24 

x0                        >= x0 
j              

x0   x1                  >= x1 
        j              

x0   x1   x2           >= x2 
               j              

partioning at depth 0 

partioning at depth 1 

partioning at depth 2 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    int j=  partition(b, h, k); 
    QS(b, h, j-1);     QS(b, j+1, k); 
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Best case quicksort: pivot always middle value 
25 

      <= x0            x0            >= x0 
0                          j                                 n 

depth 0. 1 segment of 
size ~n to partition. 

<=x1  x1  >= x1 x0  <=x2  x2  >=x2 Depth 2. 2 segments of 
size ~n/2 to partition. 

                                    
Depth 3.  4 segments of 
size ~n/4 to partition. 

Max depth: about log n.   Time to partition on each level: ~n 
Total time: O(n log n). 

Average time for Quicksort: n log n. Difficult calculation 

QuickSort procedure 
26 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    int j=  partition(b, h, k); 
    // We know b[h..j–1] <= b[j] <= b[j+1..k] 
    // Sort b[h..j-1] and b[j+1..k] 
   QS(b, h, j-1);  
   QS(b, j+1, k); 
} 

Worst-case: quadratic 
Average-case: O(n log n) 

Worst-case space: O(n*n)!  --depth of 
                                           recursion can be n 

   Can rewrite it to have space O(log n) 
Average-case:  O(n * log n) 

Partition algorithm 
27 

Key issue: 
How to choose a pivot? 

Choosing pivot 
§ Ideal pivot: the median, since 

it splits array in half 
But computing median of 
unsorted array is O(n), quite 
complicated 
Popular heuristics: Use 
w  first array value (not good) 
w  middle array value 
w  median of first, middle, last, 

 values GOOD! 
w Choose a random element 

Quicksort with logarithmic space 

Problem is that if the pivot value is always the smallest (or always 
the largest), the depth of recursion is the size of the array to sort. 

 

Eliminate this problem by doing some of it iteratively and some 
recursively 
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Quicksort with logarithmic space 

Problem is that if the pivot value is always the smallest (or always 
the largest), the depth of recursion is the size of the array to sort. 

 

Eliminate this problem by doing some of it iteratively and some 
recursively 

29 

QuickSort with logarithmic space
30 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    int h1= h; int k1= k; 
    // invariant b[h..k] is sorted if b[h1..k1] is sorted 
    while (b[h1..k1] has more than 1 element) { 
          Reduce the size of b[h1..k1], keeping inv true 
    } 
} 
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QuickSort with logarithmic space
31 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    int h1= h; int k1= k; 
    // invariant b[h..k] is sorted if b[h1..k1] is sorted 
    while (b[h1..k1] has more than 1 element) { 
          int j= partition(b, h1, k1); 
          // b[h1..j-1] <= b[j] <= b[j+1..k1] 
          if (b[h1..j-1] smaller than b[j+1..k1])  
                {  QS(b, h, j-1);  h1=  j+1; } 
         else   
                {QS(b, j+1, k1);  k1=  j-1; } 
    } 
} 

Only the smaller 
segment is sorted 

recursively. If b[h1..k1] 
has size n, the smaller 

segment has size < n/2. 
         Therefore, depth of 
recursion is at most log n 


