
RECURSION,
CONTINUED

Lecture 8
CS2110 – Fall 2015

Announcements
2

¨  A2 grades are available
¨  For prelim conflicts, please follow instructions at
 http://www.cs.cornell.edu/courses/CS2110/2015fa/exams.html

Two views of recursive methods
3

¨  How are calls on recursive methods executed?
We saw that in the lecture. Useful for
understanding hwo recursion works.

¨  How do we understand a recursive method —
know that it satisfies its specification? How do
we write a recursive method?
This requires a totally different approach.
Thinking about how the method gets executed
will confuse you completely! We now introduce
this approach.

Understanding a recursive method
4

Step 1. Have a precise spec!

/** = sum of digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;

 // n has at least two digits
 return sum(n/10) + n%10 ;
}

Step 2. Check that the method works in the base case(s): Cases
where the parameter is small enough that the result can be
computed simply and without recursive calls.

If n < 10 then n consists of
a single digit. Looking at the
spec we see that that digit is
the required sum.

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does according to the method spec and verify that the correct result
is then obtained.
 return sum(n/10) + n%10;

Understanding a recursive method
5

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

 return (sum of digits of n/10) + n%10; // e.g. n = 843

/** = sum of digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;

 // n has at least two digits
 return sum(n/10) + n%10 ;
}

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does acc. to the spec and verify correctness.

Understanding a recursive method
6

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

Step 4. (No infinite recursion) Make sure that arguments to
recursive calls are in some sense smaller than the parameters of the
method.

 n/10 < n

/** = sum of digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;

 // n has at least two digits
 return sum(n/10) + n%10 ;
}

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does according to the spec and
verify correctness.

7

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

Step 4. (No infinite recursion) Make sure that arguments to
recursive calls are in some sense smaller than the parameters of the
method

Important! Can’t do step 3 without it

Once you get the hang of it this is
what makes recursion easy! This
way of thinking is based on math
induction which we will see later
in the course.

Understanding a recursive method

Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions using recursive calls for those
smaller problems of the same kind. Done suitably point 4 is
automatically satisfied.

8

Step 1. Have a precise spec!

Step 2. Write the base case(s): Cases in which no recursive calls
are needed Generally for “small” values of the parameters.

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method

Writing a recursive method

Example: Palindromes
9

A palindrome is a String that reads the same backward and forward.
A String with at least two characters is a palindrome if
¨  (0) its first and last characters are equal and
¨  (1) chars between first & last form a palindrome:

 e.g. AMANAPLANACANALPANAMA

A recursive definition!

have to be the same

have to be a palindrome

Example: Counting characters
10

¨  countEm(‘e’ “it is easy to see that this has many e’s”) = 4
¨  countEm(‘e’ “Mississippi”) = 0

 /** countEm(c,s) = number of times c occurs in s */
 public static int countEm(char c, String s) {
 if (s.length() == 0) return 0;

 // { s has at least 1 character }
 if (s.charAt(0) != c)
 return countEm(c, s.substring(1));

 // { first character of s is c}
 return 1 + countEm (c, s.substring(1));
}

substring s[1..]
i.e. s[1] …
s(s.length()-1)

Example: Exponentiation
11

Power computation:
¤  a0 = 1
¤  If n != 0 an = a * an-1

/** power(a,n) returns a^n
 * Precondition: n >= 0 */
static int power(int a, int n) {
 if (n == 0) return 1;
 return a * power(a, n-1)
}

Example: Fast Exponentiation
12

/** power(a,n) computes a^n
 * Precondition: n >= 0 */
static int power(int a, int n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power(a*a, n/2);
 return a * power(a, n-1);
}

Power computation:
¤  a0 = 1
¤  If n != 0 an = a * an-1
¤  If n != 0 and even an = (a*a)n/2

13

Example: Searching in a list

/** Returns an index i between fst and lst, inclusive,
 * where a[i] = k.
 * Precondition: such an index exists,
 * and a is sorted in ascending order
 */
static int search(int[] a, int k, int fst, int lst) {
 …
}

n0 n1 n2 n3 …a

0 1 2 3 …

 fst lst

nk

Example: Sierpinski’s Triangle
14

/** draws Sierpinski’s triangle bounded
* by p1, p2, and p3 on g up to order n
* Precondition: pi not null, n >= 0 */
 private static void
displayTriangles(Graphics g, int order,
 Point p1, Point p2, Point p3) {
 …
}

¨  drawLine(g, p1,p2)
¨  midpoint(p1,p2)

